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Abstract—In this paper, we present a new algorithm for pixel
labeling and image segmentation based on the standard Gaussian
mixture model (GMM). Unlike the standard GMM where pixels
themselves are considered independent of each other and the spa-
tial relationship between neighboring pixels is not taken into ac-
count, the proposed method incorporates this spatial relationship
into the standard GMM. Moreover, the proposed model requires
fewer parameters compared with the models based on Markov
random fields. In order to estimate model parameters from ob-
servations, instead of utilizing an expectation–maximization algo-
rithm, we employ gradient method to minimize a higher bound on
the data negative log-likelihood. The performance of the proposed
model is compared with methods based on both standard GMM
and Markov random fields, demonstrating the robustness, accu-
racy, and effectiveness of our method.

Index Terms—Gaussian mixture models (GMMs), image seg-
mentation, pixel labeling, spatial neighborhood relationships.

I. INTRODUCTION

S EGMENTATION of images has found widespread applica-
tions in image processing and image recognition systems.

A correct segmentation result provides more information for
diagnosis. However, images corrupted with high levels of noise
may result in inaccurate image segmentation. Up until now,
many algorithms have been developed for image segmenta-
tion such as clustering methods [1], histogram-based methods
[2], artificial neural networks [3], and multiscale segmentation
methods [4]. Over the last two decades, there has been a
growing research interest in model-based techniques [5]–[7]. In
general, the algorithms based on model-based techniques can
be divided into two groups.

The first group of model-based techniques consists of the
standard Gaussian mixture model (GMM) [8]–[10]. Many re-
searchers have used it to study a number of important problems
in image segmentation [11], [12]. In general, this approach
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can be described as follows. The observation at the ith pixel
of an image is denoted by Ωj . Each pixel is considered a
random variable whose possibility density function p(xi|Ωj)
is a Gaussian function. The model assumes a common prior
distribution πj , which independently generates the pixel labels.
In addition, this prior distribution has no dependence on the
pixel index i. In order to estimate the model parameters, the
expectation–maximization (EM) algorithm [13], [14] is used to
maximize the log-likelihood of the given data set. It can be
easily seen that the spatial relationship between neighboring
pixels is not taken into account of the standard GMM [16].
For this reason, although the standard GMM is a well-known
and simple method for image segmentation, its segmentation
result is sensitive to noise, varying illumination and other
environmental factors such as wind, rain, or camera shaking.

The second group of techniques based on the Markov random
fields [17]–[22] has received great attention for modeling and
processing image data, as it aims to reduce the sensitivity of the
segmentation result with respect to noise. The major difference
is that instead of using the common prior distribution πj for
all pixels, the prior distribution πij of the second group is
different for each pixel and depends on the neighbors of the
pixel of interest and the corresponding parameters [23]. Thus,
the spatial relationship between neighboring pixels is taken into
account. Due to the introduction of the prior distribution πij , the
M step of the EM algorithm used in standard GMM cannot be
applied to estimate the model parameters from the observations.
For this reason, the Gradient Projection algorithm [22] was
proposed to implement the M step. Another method [20] based
on a closed-form update equation is used to implement the
M step and estimate the parameters. Although this approach
works well in noisy image segmentation, it is too complex and
requires a great number of parameters [22] compared with the
standard GMM.

Based on these considerations, in this paper, we introduce
a new model that incorporates the spatial relationship between
neighboring pixels based on the standard GMM. Our approach
differs from those discussed previously by the following state-
ments. First, since the proposed model is based on standard
GMM, it is simple and can be easily implemented, as compared
with the models based on Markov random fields. Second,
compared with the standard GMM, the main difference in the
proposed method is that the prior distribution is different for
each pixel and depends on the neighbors of the pixel. Third,
since the neighboring pixels in an image are similar in some
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sense, by taking the information of the local spatial interac-
tions between neighboring pixels, the proposed system works
well for noisy image. Moreover, the proposed model requires
fewer parameters compared with the model based on Markov
random fields. Finally, to estimate the unknown parameters
of the proposed model, instead of using EM algorithm, we
use the gradient method to minimize a higher bound on the
data negative log-likelihood. The proposed method is applied
to segment synthetic and real grayscale images. The perfor-
mance of the proposed model is compared with methods based
on both standard GMM and Markov random fields, demon-
strating the robustness, accuracy, and effectiveness of our
method.

The remainder of this paper is organized as follows:
Section II will describe the related problems. The proposed
approach is presented in Section III. Learning algorithms for
our method are presented in Section IV. In Section V, we show
the experimental results obtained by applying the proposed
algorithm to various synthetic and real grayscale images. Con-
clusions are given in Section VI.

II. MODEL-BASED TECHNIQUES

FOR IMAGE SEGMENTATION

In this section, a discussion of the two groups of algorithms
based on model-based techniques is presented. The first one is
a standard mixture model in which each pixel is considered to
be independent of its neighbors and, therefore, is not explicitly
incorporated into the model. The second one considers the
interactions and dependences between neighboring pixels into
account.

We first introduce common notations used throughout
this paper. We are dealing with grayscale images consist-
ing of N pixels and K classes in the image denoted by
(Ω1,Ω2, . . . ,ΩK). Given a data set of observations X =
(x1, x2, . . . , xN ), we wish to model the data using a mixture
of Gaussians. For each pixel xi, given the posterior prob-
ability p(Ωj |xi) for all classes, a determination is made if
the given pixel belongs to the class with the largest posterior
probability.

A. Standard GMM

According to the standard GMM [8], [32], the prior distribu-
tion πj of the pixel xi belonging to the class Ωj should satisfy
the constraints 0 ≤ πj ≤ 1 and

∑K
j=1 πj = 1. It assumes that

the density function at an observation xi is given by

p(xi) =
K∑

j=1

πjp(xi|Ωj). (1)

The Gaussian distribution p(xi|Ωj) is given by

p(xi|Ωj) =
1√
2πσ2

j

exp

(
− (xi − μj)2

2σ2
j

)
(2)

where μj and σj is the mean and the covariance of the Gaussian
distribution p(xi|Ωj), respectively. From (1), the log of the

likelihood function [24] is given by

L(Θ) =
N∑

i=1

log

⎛
⎝ K∑

j=1

πjp(xi|Ωj)

⎞
⎠ . (3)

In order to maximize the likelihood function given in (3),
we need to determine the parameters Θ = (μj , σj , πj) of the
GMM. Various techniques have been previously developed to
determine these parameters, based on maximizing their like-
lihood for a given data set in (3). In this context, a review
of these techniques is provided in [10], [24], [25], and [33].
After optimizing the parameters of the GMM, we have to assign
labels to the pixels

xi∈Ωj : IF p(Ωj |xi)≥p(Ωc|xi), j, c=1, 2, . . . ,K (4)

where the posterior probability p(Ωj |xi) can be expressed using
Bayes’ theorem of the form

p(Ωj |xi) =
πjp(xi|Ωj)

K∑
k=1

πkp(xi|Ωk)
. (5)

It is well known that the neighboring pixels within an image
are somewhat similar. One of the major disadvantages of the
standard GMM is that the pixel observations xi, as shown in
(1)–(3), are considered to be independent samples, and thus, the
information of the neighboring pixels is not taken into account.
Another limitation of standard GMM [22] is that for each class
Ωj , the prior distribution πj has the same weight values for each
pixel in the image.

B. GMM Based on Markov Random Fields

To overcome these problems and reduce the sensitivity of
the segmentation result to noise, several researchers [15]–[22],
[26]–[28] have suggested modifications to incorporate the local
spatial interactions between neighboring pixels. In [22], the
authors proposed a Spatially Variant Finite Mixture Model
(SVFMM) for pixel labeling. According to the SVFMM model,
the prior distribution πij of the pixel xi belonging to the class
Ωj should satisfy the following constraints: 0 ≤ πij ≤ 1 and∑K

j=1 πij = 1. The SVFMM model assumes that the density
function at an observation xi is given by

p(xi) =
K∑

j=1

πijp(xi|Ωj). (6)

The Gaussian distribution p(xi|Ωj) is the same as (2). The
main difference between the two groups of model-based tech-
niques given by (1) and (6) is the prior distribution πij . Dif-
ferent from the first group, the prior distribution in the second
group has different weight values for each pixel, for each
class Ωj in the image. The SVFMM method in [20] and [22]
introduces a prior distribution πij for the parameter set Π =
{πij}, where i = 1, 2, . . . , N and j = 1, 2, . . . , K, that takes
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into account the spatial information based on the following
Gibbs function:

p(Π)=
1
Z

exp (−U(Π)) , U(Π)=β

N∑
i=1

∑
m∈Ni

g(uim) (7)

where g(uim) is a nonnegative and monotonically increasing
function [15]. Z is a normalizing constant. β is a parameter,
and uim =

∑K
j=1(πik − πmk)2 specifies the distance between

the neighboring pixels Ni of prior distribution.
From (6), the log of the likelihood function is given by

L(Θ) =
N∑

i=1

log

⎛
⎝ K∑

j=1

πijp(xi|Ωj)

⎞
⎠ + log p(Π). (8)

The EM algorithm can be utilized to maximize the log of
the likelihood function in (8) with respect to the parameters
Θ = (μj , σj , πij). However, the estimation of prior distribution
πij in the M step requires solving a constrained optimiza-
tion problem with the following constraints: 0 ≤ πij ≤ 1 and∑K

j=1 πij = 1. Therefore, in order to maximize the log of
the likelihood function in (8), the algorithm becomes much
more computationally complex. In [22], the Gradient Projec-
tion method is utilized to maximize this likelihood function.
Another method based on a closed-form update equation [20]
has been proposed to improve the results. More details can be
found in [20]–[22]. After the optimization of the parameters,
the posterior probability p(Ωj |xi) in (9) is used to assign labels
to each pixel

p(Ωj |xi) =
πijp(xi|Ωj)

K∑
k=1

πikp(xi|Ωk)
. (9)

Although this approach works well in noisy image segmen-
tation problems, the evaluation of this approach is generally too
complex. Moreover, if we want to segment a grayscale image
consisting of N pixels into K classes, we have to deal with
K × (2 + N) parameters (K parameters of μj , K parameters
of σj , and N × K parameters of πij). This implies that the
larger the image, the more the number of parameters that we
have to estimate [22]. In order to reduce the computational
complexity, we have proposed a new algorithm detailed in the
following section.

III. PROPOSED ALGORITHM

In this section, we suggest a new model based on the standard
GMM that applies to the image classification problem. The
main advantages of the proposed system are as follows. The
proposed model is different from the standard GMM in that
the prior distributions πij are different for each pixel and
depend on the neighboring pixels. Compared with the model
based on Markov random fields, the proposed model is easier
to implement and requires fewer parameters.

Given a grayscale image of size U × V pixels, for convention
of description, the ith pixel xi of this image will be presented

Fig. 1. 3 × 3 window within the neighborhood of the ith pixel.

by x(u,v), where i = U(u − 1) + v, u = 1, 2, . . . , U , and v =
1, 2, . . . , V .

To incorporate the local spatial interactions between the
neighboring pixels, a 3 × 3 window, as shown in Fig. 1, is
selected. For each ith window, a set of neighborhood pix-
els is denoted by W(u,v) = (x(u−1,v−1), x(u−1,v), x(u−1,v+1),
x(u,v−1), x(u,v), x(u,v+1), x(u+1,v−1), x(u+1,v), x(u+1,v+1)).
Let x(u,v) denote the mean value of all the pixels in this window

xi = x(u,v) =
1
9

1∑
n=−1

1∑
m=−1

x(u+n,v+m). (10)

We define ξj(xi) to represent the weight of the ith window
for each class Ωj

ξj(xi) = ξj

(
x(u,v)

)
= exp

⎛
⎜⎝−

(
x(u,v) − cj

)2

2b2
j

⎞
⎟⎠ (11)

where cj and bj , j = 1, 2, . . . ,K, are parameters whose op-
timal values can be obtained by utilizing the methodology
presented in the following section. For the ith window, the mean
value ξj(xi) of the set of neighborhood weights ξj(xi) can be
expressed in the form

ξj(xi) = ξj

(
x(u,v)

)

=
1
9

1∑
n=−1

1∑
m=−1

exp

⎛
⎜⎝−

(
x(u+n,v+m) − cj

)2

2b2
j

⎞
⎟⎠ . (12)

We propose a new way to include the spatial relationship be-
tween neighboring pixels into the prior probability distribution
πij . This prior distribution has different values for each pixel
corresponding to each class Ωj in the image, as given by

πij =
ξj(xi)

K∑
k=1

ξk(xi)
. (13)

The idea to incorporate the spatial constraints in our method
is based on a fact that neighboring pixels in an image are
similar in some sense. Based on this relationship, we replace
each pixel value in an image with the average value of its
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neighbors, including itself. The prior probability πij in (13)
plays a role as a filter for smoothing images corrupted by
noise. Note that the prior probability πij is calculated subject
to the constraints 0 ≤ πij ≤ 1 and

∑K
j=1 πij = 1. Then, the

density function at an observation xi, as shown in (6), is given
by p(xi) =

∑K
j=1 πijp(xi|Ωj), where the Gaussian distribution

p(xi|Ωj) is the same as that given in (2).
We now compare the proposed method with the standard

GMM [8], [32]. As we can see, the main difference arises from
the prior distribution. In the standard GMM, the scalar value
(linear weight) is used for the prior distribution. On the other
hand, the exponential weight is used for the prior distributions
of the proposed method, as illustrated in (11)–(13). Although
the exponential weight is previously used to describe the prior
distribution in [25], it does not take into account the spatial
constraints in an image and the spatial information between
the neighboring pixels does not influence the decision process.
The main advantage of using the exponential weights in the
proposed method is that the prior distribution is different for
each pixel and depends on the neighbors of the pixel and the
corresponding parameters.

Given the prior probability distribution πij in (13), the log of
the likelihood function can be represented by

L(Θ) =
N∑

i=1

log

⎛
⎝ K∑

j=1

πijp(xi|Ωj)

⎞
⎠ . (14)

Since the logarithm is a monotonically increasing function, it
is often more convenient to consider the negative logarithm of
the likelihood function [24], [25]

E(Θ) = −L(Θ) = −
N∑

i=1

log

⎛
⎝ K∑

j=1

πijp(xi|Ωj)

⎞
⎠ . (15)

Applying the complete data in [8], [25], minimization of
the negative logarithm of the likelihood function in (15) cor-
responds to minimization of the following function:

E(Θold|Θnew)=−
N∑

i=1

K∑
j=1

pold(Ωj |xi) log
(
πnew

ij pnew(xi|Ωj)
)
.

(16)

The E in (16) can be regarded as an error function. Therefore,
maximizing the likelihood L in (14) is then equivalent to mini-
mizing E in (16). The minimization of the error function E with
respect to the parameters Θ = (μj , σj , cj , bj), i = 1, 2, . . . ,K,
will be discussed in the next section. After the optimization of
the parameters, the posterior probability p(Ωj |xi), as shown in
(9), is used to assign labels to each pixels.

IV. PARAMETER ESTIMATION ALGORITHM

Thus far, the discussion has focused on probability estima-
tion to determine the class Ωj to which the pixel xi should
be assigned. To generalize the posterior probability p(Ωj |xi),
we need to adjust the parameters Θ = (μj , σj , cj , bj), i =
1, 2, . . . ,K, to minimize the error function E in (16) [or maxi-
mize the likelihood function L in (14)]. In this section, instead

of utilizing EM algorithm, we employ the gradient method for
adjusting these parameters to minimize the error function E .
The proposed algorithm can be summarized as follows:

Given a grayscale image consisting of N pixels xi, i =
1, 2, . . . ,K, the objective is to segment it into K classes. From
(16), we can rewrite the error function as

E(Θold|Θnew)=−
N∑

i=1

K∑
j=1

pold(Ωj |xi)

×
(

log(πij)−
1
2

log(2π)

− 1
2

log
(
σ2

j

)
− (xi−μj)2

2σ2
j

)
. (17)

To minimize the error function E(Θold|Θnew) with respect
to Θ = (μj , σj , cj , bj), we apply the gradient descent technique
[24], [25], [36]–[38]. The process is outlined in the following
steps.
Step 1: Initialize the parameters μj and σj by using the K-mean

method [30]. Then, by selecting cj = μj and bj = σj , we
obtain the initial parameters of Θold.

Step 2: Evaluate pold(Ωj |xi), as given by (9):

pold(Ωj |xi) =
πold

ij pold(xi|Ωj)
K∑

k=1

πold
ik pold(xi|Ωk)

where pold(xi|Ωj) and πold
ij are calculated from (2) and

(13), respectively.
Step 3: Update parameters Θ = (μj , σj , cj , bj) to obtain the

new parameters Θnew. The parameters are calculated and
updated by using the gradient method [24], [25], [29],
[36]–[38]

Θnew = Θold − η∇E(Θold) (18)

where ∇E = (∂E/∂μj , ∂E/∂σj , ∂E/∂cj , ∂E/∂bj) and η
is the rate parameter. In this paper, we choose η = 10−7.
The derivative of E with respect to μj is given by

∂E
∂μj

= −
N∑

i=1

pold(Ωj |xi)
xi − μj

σ2
j

. (19)

Similarly, the derivative of E with respect to σj is given by

∂E
∂σj

= −
N∑

i=1

pold(Ωj |xi)

(
− 1

σj
+

(xi − μj)2

σ3
j

)
. (20)

The derivative of E with respect to cj can be expressed as

∂E
∂cj

= −
N∑

i=1

(
pold(Ωj |xi)

δij

υij

)

+
N∑

i=1

K∑
k=1

⎛
⎜⎜⎜⎝pold(Ωk|xi)

δik

K∑
l=1

υil

⎞
⎟⎟⎟⎠ (21)
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Fig. 2. First experiment (128 × 128 image resolution). (a) Original image, (b) corrupted original image with Gaussian noise (0 mean and 0.005 variance),
(c) K-mean (MCR = 10.12%), (d) FCM (MCR = 10.29%), (e) standard GMM (MCR = 14.31%), (f) SVFMM (MCR = 4.13%), (g) the proposed method
(MCR = 2.08%), and (h) minimization progress of the negative logarithm of the likelihood function of the proposed algorithm.

where

δij =
1∑

n=−1

1∑
m=−1

⎧⎪⎨
⎪⎩

(
x(u+n,v+m)−cj

)
2b2

j

× exp

⎛
⎜⎝−

(
x(u+n,v+m)−cj

)2

2b2
j

⎞
⎟⎠

⎫⎪⎬
⎪⎭ (22)

υij =
1∑

n=−1

1∑
m=−1

exp

⎛
⎜⎝−

(
x(u+n,v+m) − cj

)2

2b2
j

⎞
⎟⎠ . (23)

Now, considering the derivative of the term E with respect
to bj , we have

∂E
∂bj

= −
N∑

i=1

(
pold(Ωj |xi)

τij

υij

)

+
N∑

i=1

K∑
k=1

⎛
⎜⎜⎜⎝pold(Ωk|xi)

τik

K∑
l=1

υil

⎞
⎟⎟⎟⎠ (24)

where

τij =
1∑

n=−1

1∑
m=−1

⎧⎪⎨
⎪⎩

(
x(u+n,v+m) − cj

)2

2b3
j

× exp

⎛
⎜⎝−

(
x(u+n,v+m) − cj

)2

2b2
j

⎞
⎟⎠

⎫⎪⎬
⎪⎭ .

(25)

TABLE I
COMPARISON OF THE PROPOSED METHOD TO OTHER

METHODS FOR THE FIRST EXPERIMENT

TABLE II
FINAL PARAMETERS OF THE PROPOSED METHOD

FOR THE FIRST EXPERIMENT

Step 4: Check for convergence of either the negative logarithm
of the likelihood function or the parameter values. If the
convergence criterion is not satisfied, then set Θold =
Θnew and return to Step 2.

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed algorithm is
compared with those of the K-mean [30], fuzzy c-means (FCM)
[31], standard GMM [32], and the model based on Markov
random fields—SVFMM method [20]. The experiments were
performed using Matlab on Windows platform. All methods
were run until convergence. The misclassification ratio (MCR)
[16], which is the number of misclassified pixels divided by the
total number of pixels, is used to compare the results obtained.
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Fig. 3. Second experiment (128 × 128 image resolution). (a) Original image, (b) corrupted original image with Gaussian noise (0 mean and 0.005 variance),
(c) K-mean (MCR = 4.48%), (d) FCM (MCR = 4.51%), (e) standard GMM (MCR = 6.71%), (f) SVFMM (MCR = 1.31%), (g) proposed method (MCR =
0.39%), and (h) minimization progress of the negative logarithm of the likelihood function of the proposed algorithm.

We first apply the algorithm to synthetic images and then to
real-world images.

A. Synthetic Images

In the first set of experiments, synthetic images were gener-
ated and tested. A similar synthetic image (128 × 128 image
resolution) to the one used in [16] and [20], shown in Fig. 2(a),
was used to test the effectiveness of the algorithm. This image
has five classes (K = 5) with luminance values [0.2, 0.4, 0.6,
0.8, 1]. The image shown in Fig. 2(b) is made from the original
image by corrupting with Gaussian noise (0 mean and 0.005
variance). The resulting images shown in Fig. 2(c) and (d)
are obtained by applying K-mean and FCM to the synthetic
image. As can be easily seen, the accuracy of these methods
is quite poor with MCRs of 10.12% and 10.29%, respectively.
In Fig. 2(e) and (f), we present the segmentation results ob-
tained by employing standard GMM and SVFMM methods,
respectively. The result obtained by employing the proposed
method is shown in Fig. 2(g), converging after 32 iterations,
as shown in Fig. 2(h). It can be seen that the image is clas-
sified accurately with a lower MCR of 2.08%. As shown in
Table I, the effect of noise on the performance of the proposed
detector is much less as compared with those of other methods.
Moreover, for the proposed method, we only need to estimate
with 20 parameters, as shown in Table II, compared with
K × (2 + N) = 81930 parameters for the SVFMM method.

In the second experiment, another synthetic image, as shown
in Fig. 3(a), was used. It has four classes (K = 4) with lu-
minance values [0.25, 0.5, 0.75, 1]. This image was corrupted
with Gaussian noise (0 mean and 0.005 variance), as shown in
Fig. 3(b). Fig. 3(c)–(g) shows the segmentation results obtained
by employing K-mean, FCM, standard GMM, and SVFMM

TABLE III
COMPARISON OFTHE PROPOSED METHOD TO OTHER METHODS

FOR THE SECOND EXPERIMENT

TABLE IV
FINAL PARAMETERS OF THE PROPOSED METHOD

FOR THE SECOND EXPERIMENT

methods and the proposed method, respectively. As can be
seen from Fig. 3(h), the proposed method converges after eight
iterations and can classify the image with the lowest MCR
of 0.39% compared with other methods. Table III contains
the results of these methods for the given synthetic image for
varying amounts of noise. The final parameters obtained after
optimization are given in Table IV.

To illustrate the computational cost of the proposed algo-
rithm and others, an image with three classes (K = 3), as
shown in Fig. 4(a), is used in this simulation. This 128 ×
128 pixel image can be easily generated by the computer. Each
square box in this image has a size of 32 × 64 pixels, and the
2048 pixels contained within each box have the same luminance
value [1/3, 2/3, 1]. The image shown in Fig. 4(b) is made
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Fig. 4. Third experiment (128 × 128 image resolution). (a) Original image,
(b) corrupted original image with Gaussian noise (0 mean and 0.01 vari-
ance), (c) FCM (time = 0.1 s, MCR = 4.17%), (d) standard GMM (time =
0.6 s, MCR = 11.38%), (e) SVFMM (time = 49.5 s, MCR = 1.13%), and
(f) proposed method (time = 13.4 s, MCR = 0.31%).

TABLE V
COMPUTATIONAL COST (IN SECONDS) OF THE PROPOSED METHOD

TO OTHER METHODS FOR THE THIRD EXPERIMENT

Fig. 5. Minimization progress of the negative logarithm of the likelihood
function E in (15) of the proposed algorithm for the third experiment.

from the original image by corrupting with Gaussian noise
(0 mean and 0.01 variance). All methods are initialized with the
same initial condition and are performed on a PC (Core i3 with
4-GB RAM) until convergence by using Matlab in the Windows
environment. As shown in Table V, although the proposed
method is still low in terms of the speed, it has the lowest
MCR and demonstrates a higher degree of robustness with
respect to noise. Fig. 4(c) and (d) shows the segmented images
by employing FCM and standard GMM methods, respectively.
The result obtained from the SVFMM method in Fig. 4(e)
shows a good performance with an MCR of 1.13%. However,
compared with these methods, the proposed method in Fig. 4(f)

Fig. 6. First real image experiment. (a) Original image, (b) ground-truth
segmented image, (c) FCM (MCR = 1.01%), (d) standard GMM (MCR =
1.04%), (e) SVFMM (MCR = 0.82%), and (f) proposed method (MCR =
0.26%).

Fig. 7. Second real image experiment. (a) Original image, (b) ground-truth
segmented image, (c) FCM (MCR = 1.20%), (d) standard GMM (MCR =
1.01%), (e) SVFMM (MCR = 0.72%), and (f) proposed method (MCR =
0.59%).

achieves a lower MCR of 0.31%. The convergence rate of our
proposed method is shown in Fig. 5.

B. Real Images

In the first experiment in this section, a real-world image
from the Center for Morphometric Analysis at Massachusetts
General Hospital [34], as shown in Fig. 6(a), is used to test
the accuracy and determine the efficiency of the proposed
algorithm, as compared with other algorithms. The objective
is to segment the image into three classes (K = 3): gray
matter, white matter, and background. In this experiment, a low
contrast between the gray matter and the white matter increases
the complexity of the image. The ground truth of this image
is shown in Fig. 6(b). As can be seen from the result shown
in Fig. 6(c) and (d), the segmentation accuracies of FCM and
standard GMM methods are quite poor. The SVFMM method
in Fig. 6(e) demonstrates a better performance with an MCR
of 0.82%. However, many details and fine tissue structures are
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Fig. 8. Third real image experiment. (a) Original image, (b) FCM, (c) standard GMM, (d) SVFMM, (e) proposed method, and (f) the negative logarithm of the
likelihood function of the proposed method.

removed (look into the red box). Compared with these methods,
the proposed method in Fig. 6(f) reduces the effect of noise on
the final segment image lesser.

Another real brain image [34], as shown in Fig. 7(a), is used
in this experiment. The image ground truth with three classes is
shown in Fig. 7(b). The SVFMM method shown in Fig. 7(e)
produces a better result than FCM in Fig. 7(c) and standard
GMM in Fig. 7(d). However, the effect of noise on the final
segmented image remains high. We can see that many details
are lost. Again, compared with other methods, the proposed
method in Fig. 7(f) has a lower MCR of 0.59%.

In the next experiment, a real-world grayscale image [35], as
shown in Fig. 8(a), was used to compare the proposed algorithm
with other algorithms. We want to segment this image into two
classes (K = 2): road and background. A visual inspection
of the results indicates that the effect of noise on the final
segmented image of the FCM method in Fig. 8(b) is highly
noticeable. In the standard GMM method in Fig. 8(c), the effect
of noise on the final segmented image is still high. As seen
from these results, SVFMM demonstrates a good performance
compared with FCM and standard GMM. However, several
pixels in the red box of Fig. 8(d) are misclassified. In the
proposed method, as shown in Fig. 8(e), the effect of noise on
the final segmented image is significantly small. The negative
logarithm of the likelihood function of the proposed method is
shown in Fig. 8(f).

In the final experiment, another grayscale image is used.
The image shown in Fig. 9(b) is obtained by corrupting the
original image in Fig. 9(a) with Gaussian noise (0 mean and
0.002 variance). The objective is to segment this image into
four classes (K = 4): sky, far mountain, near mountain, and
stone. Fig. 9(c)–(f) shows the segmentation results obtained by
employing FCM, standard GMM, SVFMM, and the proposed
method, respectively. As shown from Fig. 9, FCM and standard

Fig. 9. Final real image experiment. (a) Original image, (b) corrupted original
image with Gaussian noise (0 mean and 0.002 variance), (c) FCM, (d) standard
GMM, (e) SVFMM, and (f) the proposed method.

GMM methods are unable to segment the image successfully.
SVFMM demonstrates a better performance compared with
those of the FCM and standard GMM methods. However, if
we look closely in the red and pink boxes, we can see that the
effect of noise on the final segmented image is still quite high.
Again, the proposed method, as shown in Fig. 9(f), obtains a
better result.

VI. CONCLUSION

In this paper, we have presented a new mixture model based
on the standard GMM to segment the grayscale images. A new
way to incorporate the spatial relationship between neighboring
pixels into the GMM has been proposed. In the proposed
method, the prior distribution πij is different for each pixel and
depends on the neighbors of the pixel and the corresponding
parameters. It is different from the standard GMM where the
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spatial relationship between neighboring pixels is not taken into
account. Compared with the models based on Markov random
fields, which is based on the pixel labels to incorporate the local
spatial constrains, our method takes into account the spatial
correlation by the pixel intensities in an image. It is based on a
well-known fact that the intensities of neighboring pixels in an
image are similar in some sense. Moreover, the proposed model
requires fewer parameters compared with the models based
on Markov random fields. Finally, to estimate the unknown
parameters of the proposed model, instead of utilizing EM
algorithm, we employ gradient method to minimize a higher
bound on the negative log-likelihood.

The proposed method has been tested with both synthetic
and real images and has been shown to be robust with respect
to noise, efficient with respect to the number of parameters
used, and sufficiently accurate with respect to the classification
results. Finally, in this paper, the number of classes (K) is
manually selected. In the future, we would like to investigate
the ways to automatically optimize this parameter.
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