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Recently, the human immune systems have aroused researcher’s interest due to it useful mechanisms
which can be used and exploited for information processing in a complex cognition system. The scope
of this research is not to reproduce any immune phenomenon accurately, rather to show that immune
concepts can be applied to develop powerful computational tools for data processing. From this view-
point, an improved artificial immune algorithm is presented and applied to the problems associated with
image registration and configurations of multiple sensor systems. Simulation results show that the
immune algorithm can successfully obtain the global optimum with less computational cost compared
to other traditional algorithms. Therefore, this method has a potential application in other optimization
problems.

� 2009 Published by Elsevier B.V.
1. Introduction

The multiple sensor system refers to an integrated combination
containing a variety of sensors to gather some features or interest-
ing information from the system’s environment. The competitive
structure sensor system has been applied in many scenarios with
advantages that each sensor provides equivalent information
about the environment [1]. Since real world sensor data inevitably
contains noise and has finite accuracy and limited reliability, it is
hard to implement multiple sensor system perfectly. Hence, merg-
ing readings from competitive sensors to form a more complete
and reliable picture of the environment becomes an important
and challenging problem. Image registration refers to finding a
function that establishes the correspondence between two images
i.e. the observed image and the reference image. On the other hand,
like other redundant systems, it is a common way to implement
system fault tolerance through duplication of components. In order
to make system efficient, we have to strike a balance between sys-
tem reliability bounds and cost, given choices among different
components types. We can regard these two questions as search
for an optimal solution under given conditions. Obviously, these
problems are not linear, and usually have a global optimum and
many local optima and are difficult to solve by using traditional
search methods [2,3]. In the past years, several typical methods
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such as Tabu search, genetic algorithm (GA) and simulated anneal-
ing (SA) emerged as potential solutions and each of them obtained
pretty good results on some problems with their individual fea-
tures. However, there are still some critical disadvantages with
them when they face a wide range of optimal problems. In short,
it is impossible to set a clear stopping criterion for Tabu search
and it usually reaches a decision rapidly with local optimum. On
the other side, although GA can reach the global optimum with
more calculations, it is sensitive to the reproduction strategy cho-
sen, including mutation rate and initial conditions [4].

In this paper, we propose an artificial immune algorithm to
search for optimal solutions in three problems, the image registra-
tion, configuration of a multiple sensor system and setting up of a
fault tolerant system. We formulate the given problem as a global
optimization problem to be solved by artificial immune algorithm,
which imitates the affinity maturation mechanism of immune cells
in germinal centers with the mechanisms hypermutation and
receptor editing. Our experimental results show the search time
required by artificial immune algorithm is much lower than for
other methods. We further discuss the basic issues of limited accu-
racy and data corruption with noise by testing the performance of
this approach under multiple noise models.

The rest of the paper is organized as follows. Section 2 intro-
duces the biological basis of the algorithm and its main mecha-
nism. Section 3 gives the outline of the artificial immune
algorithm used in this paper. Section 4 presents the implementa-
tion of image registration in a multi-sensor system. Section 5 de-
scribes the process to realize the minimizing cost of redundant
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sensor system under given conditions. Section 6 shows how to con-
figure a fault tolerant sensor system based on sensor features. Sec-
tion 7 summarizes all experimental results. Sections 8 and 9
discuss the proposed algorithm and other competitive methods
followed by conclusion in Section 10.

2. Description of immune system

A state with sufficient biological defenses to avoid infection,
diseases or other attacks from outside of body is called immunity.
The immune system is an amazing, complex and intricate entity
and it plays an important role in defend living beings against mil-
lions of invaders efficiently and effectively, like bacteria, toxins and
parasites. There are a lot of distinct components and mechanisms
acting on the immune system and some are optimized to defend
against a specific invader, while others keep a great variety of
infecting agents from propagating. Moreover, an immune system
with a great redundancy allows itself to have many distinct de-
fense mechanisms to be activated against a single agent.

From a biological and computational viewpoint, the presence of
adaptive and memory mechanisms in the immune system looks
very useful since the immune system possesses the capability of
extracting information from the infectious agents or environment
and makes it available for future recognition in cases of re-infec-
tion by a similar agent.

Biologists usually divide the immune system into two subordi-
nate categories; these are known as the innate immune system and
the adaptive immune system. Both systems depend on the activity
of white blood cells, the leukocytes, whereas the innate immunity
is mediated mainly by granulocytes and macrophages, and the
adaptive immunity is controlled by lymphocytes, as presented in
Fig. 1. Lymphocytes are responsible for the recognition and elimi-
nation of the pathogenic agents or antigens that are proportional to
the immune memory that occurs after exposure to a disease. Lym-
phocytes become active and proliferate when they are triggered by
some kind of antigenic stimulus. B lymphocytes (or B-cell), one
kind of lymphocytes, arouse researchers interest as its surface con-
nects with Y-shape receptor molecules, called antibody (Ab) which
is mainly responsible for recognizing and binding, through a com-
plementary match with an antigen. Details about the immune net-
work theory and terminology can be found in [5,6].

In the normal course of the immune system evolution, the
strength and likeness of the Ag–Ab interaction is measured by
the affinity of their match [7]. The first invasion of an Ag stimulates
an adaptive immune response among a small number of low affin-
ity B cells. The effectiveness of the immune response to secondary
encounters will be enhanced considerably by system memory
mechanism associated with the first infection, which is capable
of producing high-affinity Abs after subsequent encounters. This
Immunity 

Innate system Adaptive system 
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Fig. 1. Inner immune system and mediators.
procedure is also called the learning mechanism of immune system
and it raises the population size and the affinity of those lympho-
cytes (B cells) that have proven to be helpful during the antigen
identification phase. Thus, the immune repertoire is upgraded from
a random set to a higher affinity Abs’ repertoire that more clearly
aims on the actual antigenic environment.

In a T-cell dependent immune response, the repertoire of B cells
is stimulated and mutated basically by two mechanisms: hyper-
mutation and receptor editing [8] which is used to introduce diver-
sity during an immune response. Hypermutation may help system
to find higher affinity Ab or local optima while receptor editing al-
lows system to escape from local optima on an affinity landscape.
Fig. 2 illustrates this idea in view of all possible Ag-binding sites
depicted in the horizon axis, with the most similar ones adjacent
to each other. The Ag–Ab affinity is evaluated on the vertical axis.
For instance, if a particular Ab (Ab1) is selected during a primary
response, then point mutations allow the immune system to
search local areas around Ab1 for an Ab with higher affinity,
approximating a local optima (Ab1*) little by little. Receptor edit-
ing allows system to take large steps through the landscape and
may land in a locale with lower affinity Ab (Ab2). However, occa-
sionally the leap will lead to an Ab on the side of a hill where
the climbing regions are more promising (Ab3) to head for the glo-
bal optimum. It is clear to see that point mutations are good for
exploring local regions, driving the Ab to the top of the hill
(Ab3*), whereas editing may rescue immune responses stuck on
poor local optima.

3. Mechanism of immune algorithm

Given a suitable representation of the immune cells and the cor-
responding interactions, specific aspects of adaptive immune sys-
tem can be modeled using an artificial immune algorithm. By
utilizing the concepts of immune system including the affinity
maturation process, it can be shown that these biological princi-
ples can lead to the development of useful computational algo-
rithms. The algorithm is based on a systemic view of the
immune system without taking into account cell–cell interactions.
The paper does not attempt to model any particular biological phe-
nomenon, rather to quote some basic immune principles that can
help us better understand the immune system and to solve com-
plex engineering tasks. The main features of the immune algorithm
contain several aspects of natural immune system:

(1) Proliferation and differentiation on Abs stimulated by Ag’s.
(2) New random genetic generation updates, including subse-

quently as diverse Ab patterns, by a form of accelerated
somatic mutation (affinity maturation).
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Fig. 2. Shape space for antigen-binding sites.
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(3) Generation and evaluation of potentially differentiated Abs
carrying low affinity antigenic receptors.

After presenting the immune system theory briefly, an algo-
rithm is developed and implemented as follows: (1) update a spe-
cific memory set; (2) select and proliferate the most stimulated
Ab’s; (3) remove the low affinity Ab’s; (4) sort Ab’s diversity in or-
der and (5) choose the Ab’s to reproduce proportionally to their
affinities.

A set of new Abs are also introduced after each immune re-
sponse according to the mechanism that a fraction of new cells
from the bone marrow are added to the lymphocyte pool in order
to maintain the diversity of the population with somatic hypermu-
tation and receptor editing. Viewing from an engineering perspec-
tive, the cells with higher affinity are preserved as high-quality
candidate solutions and are replaced by improved candidates,
based on statistical evidences. A specific memory set as part of
the whole repertoire for imitating this feature in an immune sys-
tem is maintained.

It is convenient to define a shape-space model to quantitatively
describe the interactions among Ag’s and Ab’s. The set of features
that are used to characterize a molecule are called its generalized
shape. The Ag–Ab codification determines their spatial representa-
tion and a distance measure is used to calculate the degree of inter-
action between these molecules. Mathematically, the generalized
shape of a molecule (m), either an Ab or Ag, can be represented
by a set of L attributes directly associated with coordinated axes
such that ‘m’ can be considered as a point in an L-dimensional
real-valued shape space. Then any molecule ‘m’ in a shape space
S can be represented as an attribute string (set of coordinates) of
length L, like m = hm1, m2, . . . , mLi while m e SL. The length and cell
representation depends upon different problems.

The main procedure of the algorithm is depicted as follows
(Fig. 3):

(1) Generate a set (P) of candidate solutions, composed of the
subset of memory cells (M) added to the remaining (pr) pop-
ulation (P = P0 + M).

(2) Determine the n best individuals, Pn, of the population P,
based on an affinity measure.
( 1 )

( 2 )

(3 )
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Nd 
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Fig. 3. Block diagram of the algorithm implemented.
(3) Duplicate these n best individuals and give rise to a tempo-
rary population of clones (C), the clone size is an increasing
function of the affinity measure of the antigen.

(4) Produce the population of clones to a hypermutation
scheme, where the hypermutation is proportional to affinity
of the antibody. A maturated antibody population is gener-
ated (C*).

(5) Based on C*, select n% of the highest affinity cells to be C**.
(6) Re-select the improved individuals from C* and C** to com-

pose the memory set. Some members of the P set can be
replaced by other improved members of C* and C**.

(7) Replace some (d) low affinity antibodies of the population,
maintaining its diversity.

Besides, it was assumed that the n highest affinity Ab’s were
sorted in ascending order after step 3 and the number of clones
generated for all these n selected antibodies flourished by:

Nc ¼
Xn

i¼1

round
b � N

i

� �
ð1Þ

where Nc is the total number of clones generated for each of the
Ag’s, b is a multiplying factor, N is the total number of Ab’s, and
round(�) is the operator that rounds its argument toward the closest
integer. The affinity measure adopts the Hamming distance (D) be-
tween an antigen (Ag) and an antibody (Ab), according to

D ¼
XL

i¼1

di; where di ¼
1; if Abki–Agji

0; otherwise

�
ð2Þ
4. Image registration

Multiple sensor systems collect target information through sen-
sors with different positions and orientations. The information
needs to be merged in a common combination system by methods
such as image registration, in order to provide a detailed picture of
the target. Image registration refers to the fact that any two-
dimensional sensor reading can be represented as an image and
the task is to find the correct mapping of one image onto another.
Given two overlapped sensor readings, we hope to find the position
and orientation of the Sensor2 relative to the Sensor1. F is a func-
tion that maps a reading of sensor2 to that of sensor1. Considering
S1 and S2 represented by vector like (x1, x2, x3, . . . , xn), F imple-
ments S2 to S1 as Eq. (3) under noise free conditions.

FðS2Þ ¼ S1 ð3Þ

In other words, in order to fuse multiple sensor readings, they
must be registered into a common coordinate system. This prob-
lem was originally posed in [9]: Two sensors with identical geo-
metric characteristics return readings from the same
environment. The goal is to find the optimal parameters (Xt Yt h)
to define the relative position and orientation of Sensor2 with re-
spect to Sensor1. The search space is a three-dimensional vector
space and the transformation can be presented as Eq. (4) and
shown in Fig. 4.
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However, in the real world all the sensor readings inevitably
contain noise, which is modeled as a Gaussian distribution in order
to get a fitness function in Eq. (1) by
X
ðread1ðx; yÞ � read2ðx0; y0ÞÞ2=ðKðWÞÞ2 ð5Þ



Y 

Y’

  X’ 

  Xt 

  Yt

θ

Sensor 2 
Reading

Sensor 1 
Reading 

Fig. 4. Geometric relation of two sensor readings.
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K(W) is the number of pixels in the overlap for W in the search
space.

In this problem, the fitness function is composed of stochastic
noise and a unique minimum that refers to the overlap of gray-
scale values in two images. Therefore, we seek the values of Xt, Yt

and h that provide a global minimum for Eq. (5).

5. Configuration of sensor system

Multi-sensor system, a redundant system achieving fault toler-
ance by duplication of components, increases the ability of systems
to interact with their environment by combining independent sen-
sor readings into logical representations. Sensor integration of
highly redundant systems offers many advantages: (1) Multiple
inaccurate sensors are cheaper than a few accurate sensors; (2)
Sensor reliability could increase; (3) Sensor efficiency and perfor-
mance can be enhanced and (4) Higher system self-calibration
can be attained. Due to both reliability bounds and cost, highly
redundant sensors are used in key areas and their designs need a
best possible trade-off at least cost. The proposed method is ap-
plied on the configuration of a sensor system to satisfy the system
dependability with heterogeneous components at a lower cost
model. Therefore, the problem that needs to be solved is: Given J
type sensors, we have to find a module that has the least cost while
fulfilling the requirement of system dependability. On the other
hand, a similar problem can also be proposed as given a cost limit
for the system, how we can configure a sensor system with maxi-
mal reliability. From [10], a Markov chain model offers us a way to
evaluate the reliability of a sensor system. Assuming that the sys-
tem contains N identical sensors, the sensor’s failure is statistically
independent. If each sensor has an identical probability of func-
tioning r(t) (if a sensor has a constant failure rate k, the reliability
for that sensor e�kt) at a time t and a probability of being faulty q(t)
when q(t) = 1 � r(t), the reliability for the whole system is the sum
of the probabilities for the states with i equal to N to [N/2] + 1.
Hence, we obtain Eq. (6) for calculating the reliability of a system
composed of two different types of components where N1 (N2) is
the number of sensors of type 1 (2) and r1(t) (r2) are the reliabilities
of sensor type1 (2). This concept can be easily extended to applica-
tions dealing with multi-sensor systems.

RðtÞ ¼
XN1

k¼0

N1

k

� �
rk

1ð1� r1ÞN1�k �
XN2

m¼N
2þ1�k

N2

m

� �
rm

2 ð1� r2ÞN2�m
� �2

4
3
5

ð6Þ
Obviously, the cost for whole system can be calculated with Eq.
(7) below.

Xj

i¼0

CiQ i ð7Þ

Qi refers to the number of type i sensors and Ci is the cost of each
type i sensor.

It is a combinational optimization problem and cannot be
solved by linear programming since the calculation procedure of
system dependability is non-linear. In [10], an example to show
the features of this problem is given. The jaggedness on the shape
of the search space found by using an exhaustive search algorithm
indicates that the search space has many local minima. The search
methods that depend only on information in the neighborhoods of
a point will be unsuitable for solving this problem. Although the
Genetic Algorithm (GA) and Simulated Annealing (SA) obtain good
results for this problem, the immune algorithm shows a better re-
sult than the genetic algorithm for a problem having many local
optima [11,12].
6. Fault-tolerance sensor system

As we mentioned before, the multi-sensor system increases the
ability of a system to interact with its environment by combining
independent sensors into a logical network that highly attains
self-test and calibration, including enhancement of sensor reliabil-
ity, efficiency and performance as well. Imperfect tests put an addi-
tional element of uncertainty into the diagnostic process: the
accepted result of a test does not guarantee the integrity of compo-
nents under test or an unsuccessful test result does not mean that
one or more of the implicated components are defective. Therefore,
the diagnostic procedures must avoid this uncertainty in test out-
comes and system testability should be well thought-out during
the design phase of system configuration.

While configuring a multiple sensor system, we try to set up
sensor scheme at the first design phase in order to achieve maxi-
mum fault isolation under a limited cost. In other words, success
in designing the redundant sensor systems depends on making
the best possible trade-off at least cost, like fault diagnostic bounds
and system budget.

It is obviously impossible to evaluate the observable discrepan-
cies in all possible sensors resulting from all potential failure
modes, especially in a bulky system, due to the numerous failure
modes and the numbers of possible sensors. Instead, we are able
to establish a system model to assess the diagnostic qualities of ob-
servable discrepancies, such as system dynamics, reliability factors,
fault probabilities and faults effects, and then choose the proper
sensors to achieve maximal fault diagnostic ability.

Here, a two layers bipartite graph model is defined to display
the structure to compose above problem [13]. In Fig. 5, the top
layer represents a failure source that belongs to the set of failure
sources and the bottom layer means the discrepancy caused by
each sensor on different periods. We focus on configuring sensor
system with maximizing diagnostic ability mentioned in [14] as

max
s # S

PrðXjDðSÞÞ X ¼ fXtg

Climited � CðSÞ

D(S) refers to the set of discrepancies observed in the sensor system
and Xt represents a possible fault subset that consists of one or more
failure sources and belongs to set X. In practice, many subsets have
very low probabilities of occurrence and are not considered in the
design procedure. C(S) refers to the constraints set on the solution
with respect to the different sensor attributes, such as cost, weight,
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Fig. 5. Two layers sensor system model.
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Fig. 6. Sensor system configuration process.

Table 1
Artificial Immune algorithm search results: sensor1 position: x = 128, y = 128, h = 0;
sensor2 position: x = 128, y = 128, h = 2.8457; population of antibody: 8; noise level:
0.

Iterations Current h Current error (%)

1 1.8911 �34.33
10 2.7811 �2.27
20 2.798 �1.67
30 2.8209 �0.87
40 2.8422 �0.12
45 2.8429 �0.1

Table 2
Artificial Immune algorithm search results: sensor1 position: x = 0, y = 0, h = 0;
sensor2 position: x = 91, y = 91, h = 2.7489; population of antibody: 16; noise level: 0.
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power consumption and volume. Climited refers to the allowable lim-
its for each attribute.

In the sensor system model shown in Fig. 6, we construct the
relationship between the failure sources and sensor discrepancies.
We configured a sensor network with maximal diagnosis ability. In
other words, the problem is similar to multiple fault diagnosis
problems searching for the most likely candidate fault subset that
best explains the set of observed discrepancies [15]. Through this
process, we can find the significance of each sensor and evaluate
a set of sensors in a fault detection system.

For a potential fault subset Xt, the potential fault subset proba-
bilities are calculated on given discrepancy. For each subset of
these discrepancies, the most probable potential fault related to a
set of discrepancies caused by sensor subsets. Following this pro-
cess, it is feasible to record all outcomes of all the subsets of X
and evaluate the diagnostic merits of these sensor subsets.

Then we are able to use the subsets of discrepancies caused by a
potentially faulty subset to compute the three performance mea-
sures for evaluating the merits of sensor subsets and to simplify
the sensor system optimization through following method [14]:

max
Xj

i¼1

PdiSi

Once
Xj

i¼1

CiSi � Climited
Iterations Current h X value Y value

1 5.2499 15 7
15 2.6611 88 87
30 2.7301 90 87
45 2.7391 90 87
60 2.7413 90 91
75 2.7425 90 91
90 2.7430 91 91
100 2.7435 91 91
7. Experiment results

7.1. Image registration

The example model used in this paper has several periodic ele-
ments combined with non-periodic elements [10]. The equation to
represent such a terrain is shown below:
f ðx; yÞ ¼ 100þ 1
100

�40xþ 45y� 0:003xyþ 0:002x2 � 0:001y2�

�20y sin
x

18

� �
þ 35y cos

y
29

� �
� 35 sin

x
4
� y

12

� �

þ12x cos
xy

100

� ��
ð8Þ

This model inherits two characteristics that guarantee the prob-
lem to be solvable but not trivial. The non-periodic elements show
that there is a unique best match for the two sensors, while the
periodic elements ensure that this best match is not trivial. There-
fore, an algorithm should have capability to avoid local minima
within the search space before finding best match.

Tables 1 and 2 show the results of our experiment on one and
three dimension, respectively. All Abs on the search area converge
at a global optimum i.e. minimum in Fig. 7.

And also, from Tables 3 and 4, it can be easily inferred that the
immune algorithm is able to find optimal solution in presence of
large amount of noise.

7.2. Minimizing cost

In this paper, the immune algorithm is used to solve the prob-
lem proposed in [16] and to test its feasibility on various kinds of
applications. Besides, we can also compare its result with genetic
algorithms and simulated annealing.

Table 5 shows the results of these algorithms. The immune
algorithm succeeded in finding the global minimum like SA while
GA failed to reach the global optima. Although SA found the global
minimum in this case, it does not guarantee a globally optimal
solution for different problems.

As mentioned earlier, we can also configure a redundant sensor
system with limited cost to reach maximal system reliability by
integrating several different types of sensors. The proposed algo-
rithm achieved ideal results as shown in Table 6.

7.3. Fault tolerance configurations

We implemented our algorithm on two available sensor sys-
tems to test its performance with respect to different sensor
scheme requirements and limitations.



Fig. 7. Ab’s allocation pattern during searching globe optima.

Table 3
Results under different noise level.

Noise Current h X value Y value

0 2.7435 91 91
10 2.7445 91 90
20 2.7300 91 91
30 2.7381 91 89
50 2.7433 85 87
70 2.7631 92 85
90 2.7012 78 84

Table 4
ELITE GA search result.

Noise Current h X value Y value

0 2.7474 89 91
10 0 92 92
20 2.7474 91 91
30 2.7474 89 89
50 2.7977 86 �18
70 6.0214 �48 6
90 1.2329 0 5
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In this example, the candidate system comprises of seven pos-
sible sensors and each sensor reports one discrepancy. There are
five failure sources and the sensor has a single attribute. The detec-
tion probability parameters are listed in Table 8 and it is assumed
that the false alarm probabilities are all zero. The costs related to
each sensor are listed in Table 1 and values of Pdj and Pej are shown
in Table 9.

If we set the configuration budget as 1300 and system permis-
sible probability of error with 0.026, we find that the optimal sen-
sor system is composed of five chosen sensors as shown in Table 7.

We also verified the result by comparing Pd of obtained sensor
configuration and original sensor schemes as mentioned earlier.
From Fig. 8, we can see that obtained sensor system maintains high
fault detection ability while saving the whole system cost.
Table 5
Test result of eight dimensions minimum cost: 85.40; availability constraint: 99.5%.

Iterations Sensor 1 Sensor 2 Sensor 3 Sensor 4

1 1 0 2 0
20 0 0 0 0
40 2 1 0 1
60 2 1 0 0
80 1 1 0 0
100 1 1 0 0
120 0 1 0 0
8. Discussion

The artificial immune algorithm (AIS) used in this paper repre-
sents the computational implementation of the adaptive immune
response procedure and affinity selection principles. It is assumed
that an Ab repertoire is exposed to the antigen that is the stimulus
to promote the Ab’s to generate clones in order to recognize them
and only those higher affinities Ab’s will be selected to proliferate.
The best one can be kept after system re-selection. Imitating this
immune mechanism, we try to solve optimization problems con-
cerning multi-sensor systems that cannot be solved using tradi-
tional programming.

Experimentation results indicate that this evolutionary-like
algorithm can be regarded as a cooperative and competitive algo-
rithm since it performs its search through the mechanisms of so-
matic mutation and receptor editing, anxiously testing best
solutions on the given search space. The hypermutation is respon-
sible for exploring local regions, while receptor editing make big
steps to search potential global optima.

There are three main factors that may affect the performance of
the applied method such as convergence speed, the computational
complexity and its capability to fulfill a multimodal search. The
parameters are: (1) n is the number of Ab’s to be chosen for cloning
giving rise to the population Abs; (2) Nc the number of clones pro-
liferated from best selected Abs and (3) hypermutation model:
amount of (d) low affinity Ab’s to be updated after each running
of algorithm.

In order to make results clear and simplify our procedure, we
test artificial immune algorithm on maximizing the function of
h(x) = sin4(5px) to analyze its performance.

First, we set the parameters b = 1, d = 0 and test the relationship
between n and convergence iterations to find the maxima of h(x).
Results show that the parameter n does not strongly influence
the iterations or convergence speed. However, it heavily affects
the number of antibodies to be cloned which may cause a higher
computational cost to run the algorithm.

In order to evaluate the algorithm sensitivity in relation to
parameter Nc, we set d = 0 and both n and N are 10 while Nc is
tested on values {5, 10, 15, 30, 40, 50, 60, 80, 120}. In this case,
we consider convergence when the algorithm finds all peaks of
function h(x). Fig. 9 clearly shows the trade-off between average
iterations and Nc and indicates that the convergence speed in-
creases when Nc increases. The result meets our expectations since
larger number of Nc refers to larger number of available clones
which accelerates the speed of convergence in terms of program
iterations. The computational time per iteration also increases lin-
early with Nc.

We also focus on the parameter d which refers to the number of
low affinity antibodies to be replaced in each program loop. Most
importantly it maintains the diversity of the population and makes
it possible for the algorithm to explore new regions of the affinity
landscape and imitate the mechanism of receptor editing. We set
both n and N as 10 and observe the changes when d is 1, 2, 5
and 7. From Fig. 10, it is important to note that the algorithm is
able to find all maxima when d is 1 and 2; corresponding to 10%
Sensor 5 Sensor 6 Sensor 7 Sensor 8 Cost

2 0 0 2 95.76
2 0 2 3 95.30
0 0 0 1 94.22
1 0 0 1 93.72
0 0 1 2 92.76
0 0 0 3 92.36
0 0 0 4 85.40



Table 6
Test result of eleven dimensions: cost limit: $58.

S. 1 S. 2 S.3 S. 4 S. 5 S. 6 S. 7 S. 8 S.9 S.10 S.11 Dependability

Failure rate 0.06 0.15 0.13 0.5 0.11 0.32 0.07 0.22 0.01 0.19 0.22
Repair rate 0.3 0.3 0.81 0.95 0.9 0.84 0.1 0.59 0.07 0.35 0.4
Unit cost $20.00 $10.00 $20.00 $5.00 $25.00 $15.00 $7.00 $8.00 $20.70 $6.80 $7.00
SA config 0 0 0 0 2 0 0 1 0 0 0 94%
SA cost $58
GA config 0 0 0 0 1 0 0 1 1 0 0 93%
GA cost $53.70
IM config 0 0 0 0 2 0 0 1 0 0 0 94%
IM cost $58

Table 8
Prior probabilities.

i = 1 i = 2 i = 3 i = 4 i = 5

J = 1, k = 1 0.06 0 0.68 0 0.1
j = 2, k = 1 0 0.81 0.09 0.85 0
J = 3, k = 1 0.54 0 0 0.45 0.9
J = 4, k = 1 0.74 0 0 0.52 0
J = 5, k = 1 0 0.72 0 0 0.18
J = 6, k = 1 0.06 0 0.68 0 0.1
J = 7, k = 1 0 0.81 0.09 0.85 0

Table 9
Prior probabilities.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

Pdj 0.83 0.79 0.77 0.78 0.81 0.73 0.8
Pej (10�3) 2.9 4.3 3.4 6.7 3.6 4.8 5.1

Table 7
Parameters of sensor system.

S1 S2 S3 S4 S5 S6 S7

P(x) 0.12 0.135 0.18 0.075 0.03 0.14 0.05
Cost 200 300 400 250 150 300 350
Climited 1300
Pelimited 0.026
Solution 1 1 0 1 1 0 1
Total cost 1250

Fig. 8. Correct diagnostic decision between original scheme and optimal
configuration.

Fig. 9. Iterations effected by Nc.
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and 20% low affinity antibodies that have been replaced. We also
note that it finds three peaks when we set d = 5 and runs the same
iteration numbers as with d = 1. When we set d = 7, it only find two
peaks. It shows that a high value for parameter d causes a random
search through the affinity space and may find all peaks eventually
with more computational cost. Therefore, we suggest setting d
around 15% of the size of the antibodies from the viewpoint of sav-
ing computational complexity.

9. Comparison with other approaches

Biological systems are used as an inspiration for artificial neural
networks and genetic algorithm and have been well documented
in literature compared to immune algorithm. This section focuses
on viewing the main characteristics of artificial immune algorithm
according to the framework proposed in the previous section and
comparing them with the GA. The comparison is done by identify-
ing several features of each algorithm in a top to bottom fashion
and their structures for possible characterization of the
approaches.

A genetic algorithm is a stochastic algorithm whose search
method imitates the biological phenomena of genetic inheritance



Fig. 10. Optima searching sensitivity on parameter d.
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and natural selection. By setting up abstract models of natural evo-
lution, genetic algorithms run with a fixed size population and
individuals called ‘‘genetic strings”. As a population-based search,
new populations evolve through a probabilistic fitness selection
of individuals that are able to gender offspring’s similar to parents
via crossover and mutation. Details about GA can be found in [17–
19].
Generate a random initial 

population of Gene strings

Evaluate the fitness of each 

individual of the population

Select the individuals to 

reproduce

Generate the next population 

(offspring) by reproducing with 

inheritance (crossover) the 

selected individuals and apply the 

genetic variation operator 

(mutation)

Fig. 11. Basic flowchart of genetic algorithm.

Table 10
Comparison AIS with GA.

AIS

Components Attribute string in antigen
Structure Set of discrete elements
Dynamics Learning/evolution
Process Clone selection
Mutation Hypermutation without cross
Selection principle Affinity maturation
Metadynamics Elimination/recruitment of co
Interaction with other components Through recognition of attribu
Threshold Influences the affinity of elem
Non-linearity Binding Function
Robustness Population of components
A typical genetic algorithm can be described by the block dia-
gram of Fig. 11 and consists of several steps: (1) binary encoding;
(2) reproduction and selection via Roulette Wheel; (3) single-point
crossover; and (4) single-point mutation;

While immune algorithm adopted the concept of shape-space
to quantitatively describe the affinities between antibodies and
antigens that represent the problems and solutions separately. In
the course of learning and evolution, the immune algorithm
searches for the best possible solution in a given space. It is com-
posed of the following steps: (1) random antibodies exposure to
antigenic stimulus; (2) increase in size of specific antibodies sub-
population (clones) or hypermutation; (3) affinity maturation of
the antigenic receptor and (4) clone selection and receptor editing.

In general, if the search space is large and is not perfectly ideal
or if the fitness function has noise, then the GA will have a good
chance of being a competitive approach. However, if the search
space is smooth or unimodal, then gradient or hill climbing meth-
ods are much more superior to GA. If the search space is well
understood such as a traveling salesman problem-TSP, heuristics
can be introduced in specific methods, including the GA, such that
they present good performance. The detail comparison can be
found in many literatures and Table 10 shows similarities and dif-
ferences between GA and AIS in brief from an engineering point of
view.

10. Conclusion

In this paper, we focus on application of a new method inspired
by the human immune system on the problems of multiple sensor
system. At first, we introduced the main concept of multiple sensor
system and basic terminology. A model of multiple sensor net-
works was introduced along with a summary of applications, char-
acteristics, and advantages. We also presented the general
processes to deal with the problem of multiple sensor fusion by
giving a brief introduction to a number of tools and constructs
needed for multiple sensor processing.

Later we introduced a number of fundamental features and
principles of immune system, giving an outline of the whole im-
mune system structure and a brief introduction of its main compo-
nents. Several interesting mechanisms in adaptive immune
response are found useful from an engineering perspective. Based
on this, we presented an artificial immune algorithm for non-linear
optimization problems of multiple sensor system.

Through experimentation we also noticed that this evolution-
ary-like algorithm can be regarded as a cooperative and competi-
tive algorithm since it performs its search through the
mechanisms of somatic mutation and receptor editing, anxiously
testing best solutions on the given search space. The hypermuta-
tion is responsible for exploring local regions, while receptor edit-
ing takes big steps to search potential global optima. We obtained
GA

Strings representing chromosomes
Discrete chromosomes
Evolution
Fitness proportional Selection

over Point mutation, cross over
Fitness of the chromosomes

mponents Elimination/recruitment of chromosomes
te strings Through recombination operators/fitness function
ents Influences genetic variation mechanisms

Not explicit
Mainly affected by program initial status
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satisfactory results on given experiments both on image registra-
tion and configurations of the sensor networks.

Finally, we compared the artificial immune algorithm with a ge-
netic algorithm theoretically to show its uniqueness. Essentially,
their encoding schemes and evaluation functions are similar, but
their evolutionary search processes differ from the viewpoint of
inspiration, vocabulary and sequence of steps. Besides, we test
the capacity of artificial immune algorithm on key aspects of an
algorithm, such as convergence speed and computation complexity
by observing the results obtained by varying these parameters. It
can locate most of local optima compared to traditional algorithms.
Thus we can say that the artificial immune algorithm is a new way
available to solve the problems of multiple sensor system and also
for many non-linear problems.
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