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methods that must see the training data before generating tised to learn each corresponding partition. To differentiate our
hidden node parameters, ELM can generate the hidden naodethod from the other popular learning algorithms, we refer to
parameters before seeing the training data. According to tihas the parent-offspring progressive learning method (PPLM)
universal approximation capability of SLFNs with random hidin the context of this paper.
den nodes, Huanet al. [1], [14] proposed simple and efpcient In this paper, we prove that the multiELM method can
learning steps with increased network architecture (I-ELM) arabproximate any target continuous function and classify dis-
pxed-network architecture (ELM). These two methods genergdinted regions, extending the ELM learning method from a
parameters of a hidden node randomly. In these two methosisigle NN to multinetworks. Experimental results show that
training is performed only at the output layer. Hence, the overdfie proposed method tends to deliver a much better generaliza-
computational time for model structure, selection, and trainirigpn performance than many other learning methods. For large
of the model is often several hundred times less than in adgtasets such as IJCNN, Cod-RNA, and Covtype dat83gt [
other learning method such as support vector machine (SVM)tbe learning error of the proposed method can be several to
backpropagation (BP). Referendes] shows that ELM unibes hundreds of times lower than that of other SLFN methods and
fuzzy neural networks and SVM/least square SVM (LS-SVMjnultinetwork learning methods.
and compared to ELM, LS-SVM, and proximal SVM achieve
suboptimal solutions and have a higher computationalcost. ELM  |I. PRELIMINARIES AND PROBLEM STATEMENT
has become increasingly attractive to researchE8s Based A Notations
on ELM, improved methods such as enhanced incrementa " .
ELM (EI-ELM) [16], error minimized ELM (EM-ELM) [L7], [Er he sets{ i} form a complete partition of the s¢t } if
. iz1 i= and i = , i=j. Themary Cartesian

parallel chaos ELM (PC-ELM) 18], optimally pruned ELM f tition is denoted by ™ The difference of
(OP-ELM) [19], meta-cognitive ELM 2Q], real-coded genetic phroduct ora par d . isd db y_/ N h f real
algorithm based on ELMZI], architecture selection IocaI-F etwo sets j and jis denoted by i/ ;. The sets of real,
. S - integer, and positive integer numbers are denotedRby,
ized generalization error model based on EL22][ dynamic andZ*, respectively. & debnes the number of samples in a
ELM[23], and B-ELM [24] are proposed to obtain better perfor-~ ~— ' 7~ e N . i vd b
mance. Also, applications of ELM have recently been presentgfite partitionA. For allj 2", the notation{(a, by, )}z,
in computer vision25], [26], feature selectiorg]7], [28], unsu- repre_sents parameters part|t|0r]kbf_SLFNsNNj, L _represents
pervised learning, medical recogniticg], [30], power system the hldden—r_lode—numbers biN;. H is called the h|dde_n layer
analysis 81], [32], automation control33], [34], etc. outp_ut matrix of the SLF_Ns; théh colu_mn ofH (H)) is the

Many of the above mentioned learning methods are estdft hidden node output with respect to inpuggrepresents the
lished by decreasing the residual error of NN to zero or sorR§tWork output error W't,t/ln nur'\?ber of hidden nodes. Fod
conditions are met. For incremental learning methods, incluf@ining sampleg(xi, yi)}i= 1, Xz, represents input data and
ing I-ELM, EI-ELM, B-ELM, minimal resource allocation Yi=1 "ePresents output data.
network H], GAP-RBF [4], GGAP-RBF [], etc., the resid-
ual training error tends to decreases with increasing hiddBn
nodes. Whereas for bxed learning methods, including Basic-DePnition 1: Given a Pnite dataset sampled from a con-
ELM, SVM, BP, and Coned5], [36], the residual error of NN tinues model, a small positive valug Q;,i = 1,...,c are
reduces when the number of neurons is equal to the numbsHed an optimal partition oX and c is the number of
of training samples. However, it is accepted that the netwodptimal partitions ofX if the following hold.

Problem Statement and DePnition

output error will reduce increasingly slowly as hidden-node 1) {(x, y'k)}l'lﬁl =Q,M Z",Q X ,i=1...,c
numbers increase. Especially for large real systems, it remain®) Qi,i = 1,..., ¢ form a complete partition oK .
impossible to obtain the zero error within a bnite learning time 3) L-hidden-nodes SLFN canlearn €gti = 1,..., cwith
since the learning time increases inPnitely, with hidden-node less than error.
numbers also increasing inPnitely. L

For example, for the California House databigbe out- Qi = {(Xk. Y) IYk S H(a, b xidl < o ( Xk yw) X
put error of SLFN reduces very slowly after a large number I=1
of hidden nodes are used. The best mean testing root-meark = 1,..., Mi}. (2)

square error (RMSE) on the California house dataset obtaineg,qpiem 1:Given bnite training datX
by threg SLFN learning methods, ELM, BP, and SVM, is about ¢ | positive value > 0, bnd the smallest numberof
0.12677 0.1285, and 0.12581H]. , NN parameters setsN = {(a/,b/, )}L,,j= 1...,cand
This paper proposes an ELM-based learning method to timal artiti o M h that
further reduce the learning error. In this learning system,cfi\lofh'ma Ip?r ; lonsQ;]_ {t(qu,th}k{':t'l,J._' o 1 -, Csuc ; a
partition growth method is proposed to separate similar fed" (N€ points in eac OE’ imal partitio, i = 1,..., ¢ satisfy
ture data, which are easily trained by SLFNSs, into the same o j i -
partition. After all data points are classiPed, multiple NNs are Qi = {04, yig)! - P H(@E, b, Xg) S Yl
1=
k=1....,M,j=1,...,¢ (©)]

= { Xk, YL, and

1petailed information about this database is shown in Table _ _
2In our test (see Tabl#l), the mean RMSE obtained by ELM is 0.1258,WhereQl 0 Q=X ,Q1 - Qe= Myt Mat -t
which is similar to the result shown iri4. Mc= M andQ,...,Qc X .
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Algorithm 1 Optimal Parent Partition Selection Algorithm

Given a training seX , a small positive value, a loop
countjmax, andj = 1.
Step 1) Set 1= X .
Step 2-4)Learning step:
while j < jmax do
a) calculate the offspring partitioni*1 of 1 according
to Debnition 3.
b)j=j+1;
end while
return obtain optimal parent partitioR =

jmax,

1 2 ..

Fig. 1. Structure of the parent-offspring progressive learning method.

Remark 1:The focus here is on providing several particular We call partition | a parent partition, andi*1 is identiped
NNs to approachc Oeasy-learningO partitions in a contins the offspring partition of /.
ous system and to approximate a continuous system model tiRemark 2:NN theories show that with a sufbciently large
Pnd the smallest number of NN parameter sets satisfying tinémber of hidden neurons any network can generalize a given
above eqgnarray. The basic idea of the algorithm is to Pnd Ndhction to any accuracy. But for a large real problem, it
parameters that make the inequalities in (3) true for as magy impossible to set too large a number of hidden nodes
Mi(i = 1,2,..., c) as possible, and then to remove those sdi an SLFN, because the SLFN learning time will increase
isPed data points and repeat over those that remain until ialbnitely as the number of hidden nodes increases inPnitely.
data points have been processed [see Algorithm 3(c)]. The idea of this dePbnition is that théh SLFN in thesen

The proposed method is composed of two parts: partiti@LFNs can learn all the points in partition with less than
growth to classify training data and partition estimation to testerror ( >> ) , i.e., all the points in | = {x, y 30,
data. I_n_Secnon 11, we propose a partition growth _a_lgonthr_gatisfy; lye S IL:il H@E, b, %)l < L ( YioXxk) X k=
for training data. In Section IV, we propose a partition estit . M. However, according to DePnition 3, we Pnd that
mation algorithm for testing data. The structure of proposegme pointsE; = { xk, y} in the partition j satisfy: |yk S
PLM is shown in Fig.1. IL=il IiH(a}, bi,Xk)I < (XY X

According to Debnitions 2 and 3, we have the following
I11. PARTITION GROWTHALGORITHM FOR theorem.
TRAINING DATA Theorem 1:Given a training seX , a partition J, |

To solve problem 1, we must brst focus our attention on estf- - @ positive small value , and repeated Debnition &
mating a number of regions, classifying the data points int§nes to generaten partitions *1,..., J*™ then we have
these regions, and obtaining the corresponding NN paramet&®0Ptimal parent partitioRasR= " I*+ ... J*M and
In this section, the partiton growth algorithm is propose@l!l the points inR = {y,, XL 1 belong to the same optimal

to estimate feasible regions and to classify the training dai@rtition such that

points. The proposed method is composed of several steps that L
are shown in Sections IlI-ABIII-C. R= (X, Yi) VxS PHE, B, X))l <, ( X Y) X
I=1
A. Optimal Parent Partition Selection s=1...,mk=1...,M (5)
DePnition 2: Given a training data = { (X, Yi)M-;}. For  Proof: For each 1S, s= 1,..., m there exists at least one
all j Z*, the notationNN' represents a parameter set o8LFN that can learn eachi*S,s = 1,..., m with error
jth SLFN NN’ = {(a/, b/, /)}L,, which has already beenbased on Depnition 3
trained by . _ L M
Debnition 3: Given a bnite number of data points = *S= (x,y) yS FH &, by, x9
{(X: yi), k = 1,..., M} sampled from a continuous sys- =1 k= N+ 1
tem and a partition J, ! X . n SLFNs (NN'; =
{(@, b, iz, i = 1,...,n) that have already been trained < L (xy) X . (6)
by partition !, partition 1*1 is obtained by
L BecauseR= J*1 ... J*M gll the points in theR can
E= (XYW IS (H(@, b, x)| < ,( %, y) X  be satisped to (5). u
I=1 According to Theorem 1, the optimal parent cluster algo-
i=1...,n rithm is summarized as in Algorithm 1.

Remark 3: Theorem 1 gives the proof of Algorithm 1. The

Lo 1yl - N
| Bz, 2= arg mia>(#E.),| Lot ™) gim of Algorithm 1 is to bnd an optimal parent partitiéh
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Fig. 9. Time complexity when training MultiSVnt(linear), MultiSVM;ight(RBF), CAPO and the proposed method on Cod-RNA and Covapp, where the
x- andy-axes show the number of training samples and CPU time (in seconds), respectively. Result on (a) Cod-RNA and (b) Covapp.
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Fig. 10. Performance and CPU time (in seconds) of the proposed method with different paramigigksSimax, S, . Each subbgure shows performance

in the Prst row and corresponding CPU time in the second row. Result on (a) Bank32, (b) Puma, (c) Pole, (d) Bank32, (e) Puma, and (f) Pole.

accept that the separating hyperplane is necessary in a sirgmpare seven methods: Boost SVM, Multiswaﬁf“ [3g],
NN (BP, SVM, or ELM). From Fig.7(c), we Pnd that there p;itis\vMm RBF 7

is a separating hyperplane in ELM; unfortunately, it is insufR-ppo
cient to achieve 100% accuracy by using only one separatigg,tisvm

B9

MultiS\VM linear
and UNlabel
perfy Boost SVM and CAPO, the paramet&

erf ?

MultiSVMEEES  [3g),
#a).

For MultiSVMiignt,

hyperplane. From Fig6(b) and (d), that unlike traditional j5 selected fronC {257,..., 27}

learning methods there is more than one separating hyperplang,pjesy andVi present the performance of compared meth-
in the proposed multinetwork learning method. The proposgfs: the best result for each task is displayed in boldface.
method is superior to other SLFN methods, because PPLdb| v and CAPO succeed in bnishing all tasks in 6 h, but
exploits more nonlinearity. the remaining methods can only work for binary-classibcation
problems. In this table, we observe that the proposed method

C. Performance Comparison Between PPLM and Other achieves performance improvements on testing accuracy on

State-of-the-Art Clustering Methods

In this subsection, we compare the performance and efP?yyp:/symiightioachimsorg/
ciency of PPLM with state-of-the-art methods. Specibcally, we8http://svmlight.joachims.org/svm_perf.html
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TABLE Il
PERFORMANCECOMPARISON OFFIXED LEARNING METHODS (TIME-TRAINING TIME, MEAN-MEAN TESTING RMSE)

databases OP-ELM ELM (500 nodes) EM-ELM (500 nodes) PPLM
mean time(s) #node mean time(s) mean time(s) mean time(s)
Puma 0.1673  600.5986 191.0 0.1390 0.7198 0.1391 25.2969 0.0951 118.1067
Bank 0.1249  470.3637 120.0 0.1040 0.9718 0.1059 19.7403 0.0793 113.1721
Fried 0.0702  595.8042 256.5 0.0408 2.4071 0.0411 72.6585 0.0590 173.4221
House 8L 0.0848  205.2178 82.5 0.0656 1.7201 0.0630 69.0785 0.0346 173.3156
Parkin_motor 0.2180 173.4170 106.0 0.2136 0.5709 0.2174 18.4093 0.1039 161.8079
Parkin_total 0.2075  209.2129 118.5 0.2014  12.0972 0.1918 0.7097 0.1188 161.8598
Wine 0.1419  123.6413 80.2 0.1185 0.2507 0.1177 8.0178 0.0784 80.4286
Pole 0.3043  650.2003 3035.8  0.1881 0.6571 0.1878 28.0994 0.1213 342.5567
Cal_Housing  0.1273  238.2588 106.5 0.1258 1.0078 0.1250 35.0785 0.0822 235.6733

TABLE IV

PERFORMANCECOMPARISON OFFIXED LEARNING METHODS (ACCURACY-MEAN TESTING CLASSIFICATION ACCURACY, TIME-TRAINING TIME,
ERROR-MEAN TESTING CLASSIFICATION ERROR)

databases ELM (1000 hidden nodes) I-ELM (1000 hidden nodes) EM-ELM (1000 hidden nodes) PPLM (10 hidden nodes)

accuracy error time(s)  accuracy error time(s)  accuracy error time(s) accuracy error time(s)

Mushroom 85.23% 14.77% 7.2969 84.49% 15.51% 1.6563 91.32% 8.68% 419.5833 99.48% 0.52% 85.9323
Connect4 79.22% 20.78%  21.8359 73.30% 26.70%  22.5547 79.33% 20.67%  1445.2701 90.87% 9.13% 850.4288
Protein 66.97% 33.03%  15.8531 73.30% 26.70%  22.5547 66.98% 33.02%  552.5063 77.85%  22.15%  1083.6197
w3a 98.22% 1.78% 4.5875 97.09% 2.91% 2.1500 98.24% 1.76% 178.5344 99.07% 0.93% 107.0579
a9%a 85.69% 14.31%  18.1359 84.10% 15.90% 6.2875 85.68% 14.32%  1247.1948 96.65% 3.35% 157.4793
cod rna 95.95% 4.05%  60.7750 72.01% 27.99%  17.2937 95.94% 4.06% 1903.8715 99.96% 0.04% 379.5124
acoustic 77.09% 2291%  41.2938 68.18% 31.82%  18.6000 77.05% 22.95%  2604.8715 98.92% 1.08% 513.0270
IJCNN 93.24% 6.76% 26.1469 90.50% 9.50% 7.0500 92.15% 7.85% 2604.8715 99.24% 0.76% 128.0179
Poker 54.34% 45.66%  22.0688 50.14% 49.86%  9.3031 54.34% 45.66%  1011.1072 83.58% 16.42%  366.9526
Covtype 80.47% 19.53%  35.3312 70.07% 29.93%  43.6344 78.68% 21.32%  6320.8145 99.07% 0.93% 1236.8861

TABLE V

PERFORMANCECOMPARISON OFOTHER CLUSTERING METHODS (ERROR-MEAN TESTING CLASSIFICATION ERROR, TIME-TRAINING TIME)

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 45, NO. 8, AUGUST 2015

databases Multi-SyMiinear Multi-SVMEBE Multi-SvMlinear Multi-SVMRBE PPLM
ight light perf perf

error time(s) error time(s) error time(s) error time(s) error time(s)

Mushroom  26.15% 12.8710 38.15% 7.5640 37.42% 18.5433 15.16% 6.2017 0.52% 85.9323
IJCNN 6.80% 28.7415 1.21% 47.9815 3.18% 38.5304 7.80% 78.2017 0.76% 128.0179
a9a 12.21% 42.0821 4.13% 484.2910 14.80% 76.8785 15.01% 21.8710 3.35% 157.4793
w3a 1.76% 7.5704 2.63% 29.8714 2.72% 35.8289 1.83% 420.9800 0.93% 107.0579
cod-rna 29.19% 97.2571 10.21%  2397.5207 13.20%  876.5840 37.33%  1450.8501 0.04% 379.5124
Protein _a _a _a _a _a _a _a _a 22.15%  1083.6197
Connect4 _a _a _a _a _a _a _a _a 9.23% 850.4288
Covtype 3791% 562.2041 40.64%  8655.6801  42.39% 3.1007 42.39% 8.2712 0.93% 1236.8861

_a: The method can only work for binary-classification problems.

most tasks, and many of the performance improvements ardo further study the generalization performance for classi-

extremely large. Consider the following.

1)

2)

3)

Pcation problems on different parameters, we perform experi-
For the IJCNN dataset, the testing error of PPLNMhents on three medium-sized datasets: A9a, W3a, and IJCNN.
is about 9, 2, 5, 8, 10, and 12 times lower thalkVe compare the classibcation performances between PPLM

that of MUItiSVMTe, MultiSVMRSE, MultiSVM e, and other compared methods under different parameZers
MuItiSVMEe%fF, Boost SVM, UNlabel, and CAPO, respectively. For all compared methods, we varywithin
respectively. {257,256 ..., 27}. Moreover, for PPLM and CAPO, we bx

For Cod-RAN, the testing error of PPLM is about 73@nother parameter at 0.03 and another parametér at 1.
times, 250 times, 330 times, 930 times, 970 times, 2Fag. 8 shows the results: the proposed method generally out-
times, and 920 times lower than that of Mu|tiS\",3ﬂtar, performs the compared methods at differéht Thus, our
MultiSVMREE,  MuliSVMIIea,  MultisVMREE,  method is more robust witd.

UNlabel, and CAPO, respectively. It is well known that many ensemble learning methods
For Covtype, the testing error of PPLM is about 45 timggquire processing loads of nonlinear complexity, i.e., the
and 40 times lower that of Boost SVM and CAPOcomputational time of the given data is a nonlinear func-
respectively. Moreover, we bnd that only CAPO antion of the training sample sizeNj. As seen in Fig.9, for
PPLM can work for multiclassibcation problems. the proposed method the computational complexity [for
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TABLE VI
PERFORMANCECOMPARISON OFOTHER CLUSTERING METHODS (TIME-TRAINING TIME, MEAN-MEAN TESTING CLASSIFICATION ERROR)

databases Boost SVM UNlabel CAPO PPLM

error time(s) error time(s) error time(s) error time(s)

Mushroom 4.24% 1637.5017 1.73% 586.2017 22.32% 12.5874 0.52% 85.9323
IJCNN 5.17% 117.5792 9.30%[41] N/A 2.88% 192.5071 0.76% 128.0179
a9a 21.73% 178.0750 _a _a 17.75%  1323.4081 3.35% 157.4793
w3a 3.19 571.2074 2.57 2791.9815 1.90% 27.8417 0.93% 107.0579
cod-rna 40.17% 250.0171 10.99%[41] N/A 37.42%  2789.5814 0.04% 379.5124
Protein 37.58%  2350.7702 b b 23.18%  1378.2541  22.15%  1083.6197
Connect4 31.07%  1701.2701 b b 27.32%  1297.0900 9.23% 850.4288
Covtype 41.20%  6270.1750 N/A N/A 37.42%  2789.5814 0.93% 1236.8861

_a: Out of memory in Matlab environment.
_b: The method can only work for binary-classification problem.
N/A: The method can not give results in 6 hours.

points is approximately proportional td. However, CAPO VI. CONCLUSION

and SVMignt(RBF) requireO(N?) computational effort. Thus, | this paper, a new learning system called the PPLM is

with respect to time complexity,_SVMht(lineal) and PPLM proposed to further improve learning accuracy. Unlike other

cost comparable CPU time, which is much less than CAPQN-pased methods, in this new approach similar feature data

and MUItISVM:i?g%'t:' are selected into the same region, then a multineural network
learns these regions and eventually further reduces the learn-

D. Sensitivity of Parameters ing error. The experimental results show that, compared to

In this subsection, we discuss the sensitivity of all th@ther NN learning methods, the proposed PPLM signibcantly
parameters in PPLM. In the proposed method, there are pgéuces the network output error. This means that the proposed
parametersn, , S jmax and imax. The mean testing RMSE, method tends to deliver a much better generalization perfor-
mean learning time, and mean region-numbers offered Biance than other learning methods. Compared to some large
PPLM with different values of parameters in PPLM for alflatasets such as IJCNN, Cod-RNA, and Covtype dataset, the
test real pr0b|ems are tabulated in F@ We carry out k5 Iearning error of the PPLM can be several hundreds of times
cross validation tests on some databases. lower than that of other learning methods.

These real databases are tested by selecting parameters
imax Jmax, S randomly from their respective feasible regions,

n always randomly generate from [116], but bxing param-
eter = 0.005 0.02, 0.03,0.05,0.08, and 01. We consider
three kinds of situations: lnax jmax. S are generated ran-
domly from respective regiongfax [4, 8], imax [10, 50],
andS [#X /10, #X /15]); 2) the parametejmax is Pxed
as specibc values 5, but thgax and S are generated ran-
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