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methods that must see the training data before generating the
hidden node parameters, ELM can generate the hidden node
parameters before seeing the training data. According to the
universal approximation capability of SLFNs with random hid-
den nodes, Huanget al. [1], [14] proposed simple and efÞcient
learning steps with increased network architecture (I-ELM) and
Þxed-network architecture (ELM). These two methods generate
parameters of a hidden node randomly. In these two methods,
training is performed only at the output layer. Hence, the overall
computational time for model structure, selection, and training
of the model is often several hundred times less than in any
other learning method such as support vector machine (SVM) or
backpropagation (BP). Reference [15] shows that ELM uniÞes
fuzzy neural networks and SVM/least square SVM (LS-SVM),
and compared to ELM, LS-SVM, and proximal SVM achieve
suboptimal solutions and have a higher computational cost. ELM
has become increasingly attractive to researchers [13]. Based
on ELM, improved methods such as enhanced incremental
ELM (EI-ELM) [ 16], error minimized ELM (EM-ELM) [17],
parallel chaos ELM (PC-ELM) [18], optimally pruned ELM
(OP-ELM) [19], meta-cognitive ELM [20], real-coded genetic
algorithm based on ELM [21], architecture selection local-
ized generalization error model based on ELM [22], dynamic
ELM [23], and B-ELM [24] are proposed to obtain better perfor-
mance. Also, applications of ELM have recently been presented
in computer vision [25], [26], feature selection [27], [28], unsu-
pervised learning, medical recognition [29], [30], power system
analysis [31], [32], automation control [33], [34], etc.

Many of the above mentioned learning methods are estab-
lished by decreasing the residual error of NN to zero or some
conditions are met. For incremental learning methods, includ-
ing I-ELM, EI-ELM, B-ELM, minimal resource allocation
network [4], GAP-RBF [4], GGAP-RBF [6], etc., the resid-
ual training error tends to decreases with increasing hidden
nodes. Whereas for Þxed learning methods, including Basic-
ELM, SVM, BP, and Cone [35], [36], the residual error of NN
reduces when the number of neurons is equal to the number
of training samples. However, it is accepted that the network
output error will reduce increasingly slowly as hidden-node
numbers increase. Especially for large real systems, it remains
impossible to obtain the zero error within a Þnite learning time
since the learning time increases inÞnitely, with hidden-node
numbers also increasing inÞnitely.

For example, for the California House database,1 the out-
put error of SLFN reduces very slowly after a large number
of hidden nodes are used. The best mean testing root-mean-
square error (RMSE) on the California house dataset obtained
by three SLFN learning methods, ELM, BP, and SVM, is about
0.1267,2 0.1285, and 0.1258 [14].

This paper proposes an ELM-based learning method to
further reduce the learning error. In this learning system, a
partition growth method is proposed to separate similar fea-
ture data, which are easily trained by SLFNs, into the same
partition. After all data points are classiÞed, multiple NNs are

1Detailed information about this database is shown in TableI.
2In our test (see TableIII ), the mean RMSE obtained by ELM is 0.1258,

which is similar to the result shown in [14].

used to learn each corresponding partition. To differentiate our
method from the other popular learning algorithms, we refer to
it as the parent-offspring progressive learning method (PPLM)
in the context of this paper.

In this paper, we prove that the multiELM method can
approximate any target continuous function and classify dis-
jointed regions, extending the ELM learning method from a
single NN to multinetworks. Experimental results show that
the proposed method tends to deliver a much better generaliza-
tion performance than many other learning methods. For large
datasets such as IJCNN, Cod-RNA, and Covtype dataset [37],
the learning error of the proposed method can be several to
hundreds of times lower than that of other SLFN methods and
multinetwork learning methods.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notations

The sets{� i } form a complete partition of the set{� } if� n
i= 1 � i = � and � i

�
� j = � , � i �= j. The m-ary Cartesian

product of a partition� is denoted by� m. The difference of
the two sets� i and� j is denoted by� i / � j . The sets of real,
integer, and positive integer numbers are denoted byR, Z,
and Z+ , respectively. #A deÞnes the number of samples in a

Þnite partitionA. For all j � Z+ , the notation{(aj
l , bj

l , � j
l )}

Lj
l= 1

represents parameters partition ofjth SLFNsNNj, L represents
the hidden-node-numbers ofNNj. H is called the hidden layer
output matrix of the SLFNs; thelth column ofH (Hl) is the
lth hidden node output with respect to inputs.en represents the
network output error withn number of hidden nodes. ForM
training samples{(xi , yi )}

M
i= 1, xM

i= 1 represents input data and
yM

i= 1 represents output data.

B. Problem Statement and DeÞnition

DeÞnition 1: Given a Þnite datasetX sampled from a con-
tinues model, a small positive value� , Qi, i = 1, . . . , c are
called an optimal partition ofX and c is the number of
optimal partitions ofX if the following hold.

1) {(xi
k, yi

k)}Mi
k= 1 = Qi, Mi � Z+ , Qi � X , i = 1, . . . , c.

2) Qi, i = 1, . . . , c form a complete partition ofX .
3) L-hidden-nodes SLFN can learn setQi, i = 1, . . . , c with

less than� error.

Qi = { (xk, yk)
�
� |yk Š

L�

l= 1

� lH(al , bl , xk)| < �, ( xk, yk) � X

k = 1, . . . , Mi}. (2)

Problem 1:Given Þnite training dataX = { xk, yk}
M
k= 1, and

a small positive value� > 0, Þnd the smallest numberc of
NN parameters setsNNj = { (aj

i , bj
i , � j

i )}L
i= 1, j = 1. . . , c and

c optimal partitionsQj = { (xkj , ykj
}
Mj
kj= 1, j = 1, . . . , c such that

all the points in each optimal partitionQi, i = 1, . . . , c satisfy

Qj = { (xkj , ykj
)|

L�

i= 1

� j
i H(aj

i , bj
i , xkj ) Š ykj

| � �

kj = 1, . . . , Mj, j = 1, . . . , c} (3)

whereQ1	· · · 	 Qc = X , Q1
· · · 
 Qc = � , M1+ M2 + · · ·+
Mc = M andQ1, . . . , Qc � X .
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Fig. 1. Structure of the parent-offspring progressive learning method.

Remark 1:The focus here is on providing several particular
NNs to approachc Òeasy-learningÓ partitions in a continu-
ous system and to approximate a continuous system model to
Þnd the smallest number of NN parameter sets satisfying the
above eqnarray. The basic idea of the algorithm is to Þnd NN
parameters that make the inequalities in (3) true for as many
Mi(i = 1, 2, . . . , c) as possible, and then to remove those sat-
isÞed data points and repeat over those that remain until all
data points have been processed [see Algorithm 3(c)].

The proposed method is composed of two parts: partition
growth to classify training data and partition estimation to test
data. In Section III, we propose a partition growth algorithm
for training data. In Section IV, we propose a partition esti-
mation algorithm for testing data. The structure of proposed
PLM is shown in Fig.1.

III. PARTITION GROWTH ALGORITHM FOR

TRAINING DATA

To solve problem 1, we must Þrst focus our attention on esti-
mating a number of regions, classifying the data points into
these regions, and obtaining the corresponding NN parameters.
In this section, the partition growth algorithm is proposed
to estimate feasible regions and to classify the training data
points. The proposed method is composed of several steps that
are shown in Sections III-AÐIII-C.

A. Optimal Parent Partition Selection

DeÞnition 2: Given a training data� = { (xk, yk)
M
k= 1}. For

all j � Z+ , the notationNNj
� represents a parameter set of

jth SLFN NNj
� = { (aj

l , bj
l , � j

l )}L
l= 1, which has already been

trained by� .
DeÞnition 3: Given a Þnite number of data pointsX =

{(xk, yk), k = 1, . . . , M} sampled from a continuous sys-
tem and a partition� j , � j � X . n SLFNs (NNi

� j =
{(ai

l , bi
l , � i

l )}
L
l= 1, i = 1, . . . , n) that have already been trained

by partition � j , partition � j+ 1 is obtained by

Ei =

�

(xk, yk)
�
� |yk Š

L�

l= 1

� i
l H(ai

l , bi
l , xk)| < �, ( xk, yk) � X

	

i = 1, . . . , n

� j+ 1 =



� j+ 1|� j+ 1 = Ez, z = arg max
i

(#Ei), i = 1, . . . , n
�
. (4)

Algorithm 1 Optimal Parent Partition Selection Algorithm
Given a training setX , a small positive value� , a loop
count jmax, andj = 1.
Step 1) Set� 1 = X .
Step 2-4)Learning step:
while j < jmax do

a) calculate the offspring partition� j+ 1 of � j according
to DeÞnition 3.
b) j = j + 1;

end while
return obtain optimal parent partitionR = � 1 
 � 2 
 · · · 

� jmax.

We call partition� j a parent partition, and� j+ 1 is identiÞed
as the offspring partition of� j .

Remark 2:NN theories show that with a sufÞciently large
number of hidden neurons any network can generalize a given
function to any accuracy. But for a large real problem, it
is impossible to set too large a number of hidden nodes
in an SLFN, because the SLFN learning time will increase
inÞnitely as the number of hidden nodes increases inÞnitely.
The idea of this deÞnition is that theith SLFN in thesen
SLFNs can learn all the points in partition� j with less than
� error (� >> �) , i.e., all the points in� j = { xk, yk}

M
k= 1

satisfy: |yk Š
� Li

l= 1 � i
l H(ai

l , bi
l , xk)| < �, ( yk, xk) � X , k =

1, . . . , M. However, according to DeÞnition 3, we Þnd that
some pointsEi = { xk, yk} in the partition� j satisfy: |yk Š� Li

l= 1 � i
l H(ai

l , bi
l , xk)| < �, ( xk, yk) � X .

According to DeÞnitions 2 and 3, we have the following
theorem.

Theorem 1:Given a training setX , a partition � j , � j �
X , a positive small value� , and repeated DeÞnition 3m
times to generatem partitions � j+ 1, . . . , � j+ m, then we have
an optimal parent partitionR asR = � j 
 � j+ 1
· · ·
 � j+ m, and
all the points inR = { yk, xk}M

k= 1 belong to the same optimal
partition such that

R =

�

(xk, yk)
�
� |yk Š

L�

l= 1

� s
l H(as

l , bs
l , xk)| < �, ( xk, yk) � X

	

s = 1, . . . , m, k = 1, . . . , M. (5)

Proof: For each� j+ s, s = 1, . . . , m, there exists at least one
SLFN that can learn each� j+ s, s = 1, . . . , m with � error
based on DeÞnition 3

� j+ s =


�

�
(x, y)

�
�

�
�
�
�
�
�
y Š

�
L�

l= 1

� s
l H

�
as

l , bs
l , xg

�
�
	 M

k= N+ 1

�
�
�
�
�
�

< �, ( x, y) � X

	

. (6)

Because,R = � j+ 1 
 · · · 
 � j+ m, all the points in theR can
be satisÞed to (5).

According to Theorem 1, the optimal parent cluster algo-
rithm is summarized as in Algorithm 1.

Remark 3:Theorem 1 gives the proof of Algorithm 1. The
aim of Algorithm 1 is to Þnd an optimal parent partitionR.
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(a) (b)

Fig. 9. Time complexity when training MultiSVMlight(linear), MultiSVMlight(RBF), CAPO and the proposed method on Cod-RNA and Covapp, where the
x- andy-axes show the number of training samples and CPU time (in seconds), respectively. Result on (a) Cod-RNA and (b) Covapp.

(a) (b) (c)

(d) (e) (f)

Fig. 10. Performance and CPU time (in seconds) of the proposed method with different parametersn, imax, jmax, S, � . Each subÞgure shows performance
in the Þrst row and corresponding CPU time in the second row. Result on (a) Bank32, (b) Puma, (c) Pole, (d) Bank32, (e) Puma, and (f) Pole.

accept that the separating hyperplane is necessary in a single
NN (BP, SVM, or ELM). From Fig.7(c), we Þnd that there
is a separating hyperplane in ELM; unfortunately, it is insufÞ-
cient to achieve 100% accuracy by using only one separating
hyperplane. From Fig.6(b) and (d), that unlike traditional
learning methods there is more than one separating hyperplane
in the proposed multinetwork learning method. The proposed
method is superior to other SLFN methods, because PPLM
exploits more nonlinearity.

C. Performance Comparison Between PPLM and Other
State-of-the-Art Clustering Methods

In this subsection, we compare the performance and efÞ-
ciency of PPLM with state-of-the-art methods. SpeciÞcally, we

compare seven methods: Boost SVM, MultiSVMlinear
light [38],

MultiSVMRBF
light ,

7 MultiSVMlinear
perf , MultiSVMRBF

perf
8 [38],

CAPO [39] and UNlabel [40]. For MultiSVMlight,
MultiSVMperf, Boost SVM and CAPO, the parameterC
is selected fromC � { 2Š7, . . . , 27}.

TablesV andVI present the performance of compared meth-
ods; the best result for each task is displayed in boldface.
PPLM and CAPO succeed in Þnishing all tasks in 6 h, but
the remaining methods can only work for binary-classiÞcation
problems. In this table, we observe that the proposed method
achieves performance improvements on testing accuracy on

7http://svmlight.joachims.org/
8http://svmlight.joachims.org/svm_perf.html
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TABLE III
PERFORMANCECOMPARISON OFFIXED LEARNING METHODS(TIME-TRAINING TIME, MEAN-MEAN TESTING RMSE)

TABLE IV
PERFORMANCECOMPARISON OFFIXED LEARNING METHODS(ACCURACY-MEAN TESTING CLASSIFICATION ACCURACY, TIME-TRAINING TIME,

ERROR-MEAN TESTING CLASSIFICATION ERROR)

TABLE V
PERFORMANCECOMPARISON OFOTHER CLUSTERING METHODS(ERROR-MEAN TESTING CLASSIFICATION ERROR, TIME-TRAINING TIME)

most tasks, and many of the performance improvements are
extremely large. Consider the following.

1) For the IJCNN dataset, the testing error of PPLM
is about 9, 2, 5, 8, 10, and 12 times lower than
that of MultiSVMlinear

light , MultiSVMRBF
light , MultiSVMlinear

perf ,
MultiSVMRBF

perf , Boost SVM, UNlabel, and CAPO,
respectively.

2) For Cod-RAN, the testing error of PPLM is about 730
times, 250 times, 330 times, 930 times, 970 times, 275
times, and 920 times lower than that of MultiSVMlinear

light ,

MultiSVMRBF
light , MultiSVMlinear

perf , MultiSVMRBF
perf ,

UNlabel, and CAPO, respectively.
3) For Covtype, the testing error of PPLM is about 45 times

and 40 times lower that of Boost SVM and CAPO,
respectively. Moreover, we Þnd that only CAPO and
PPLM can work for multiclassiÞcation problems.

To further study the generalization performance for classi-
Þcation problems on different parameters, we perform experi-
ments on three medium-sized datasets: A9a, W3a, and IJCNN.
We compare the classiÞcation performances between PPLM
and other compared methods under different parametersC,
respectively. For all compared methods, we varyC within
{2Š7, 2Š6, . . . , 27}. Moreover, for PPLM and CAPO, we Þx
another parameter� at 0.03 and another parameterB at 1.
Fig. 8 shows the results: the proposed method generally out-
performs the compared methods at differentC. Thus, our
method is more robust withC.

It is well known that many ensemble learning methods
require processing loads of nonlinear complexity, i.e., the
computational time of the given data is a nonlinear func-
tion of the training sample size (N). As seen in Fig.9, for
the proposed method the computational complexity forN



YANG et al.: DATA PARTITION LEARNING WITH MULTIPLE EXTREME LEARNING MACHINES 1473

TABLE VI
PERFORMANCECOMPARISON OFOTHER CLUSTERING METHODS(TIME-TRAINING TIME, MEAN-MEAN TESTING CLASSIFICATION ERROR)

points is approximately proportional toN. However, CAPO
and SVMlight(RBF) requireO(N2) computational effort. Thus,
with respect to time complexity, SVMlight(linear) and PPLM
cost comparable CPU time, which is much less than CAPO
and MultiSVMRBF

light .

D. Sensitivity of Parameters

In this subsection, we discuss the sensitivity of all the
parameters in PPLM. In the proposed method, there are Þve
parameters:n, �, S, jmax and imax. The mean testing RMSE,
mean learning time, and mean region-numbers offered by
PPLM with different values of parameters in PPLM for all
test real problems are tabulated in Fig.10. We carry out k5
cross validation tests on some databases.

These real databases are tested by selecting parameters
imax, jmax, S randomly from their respective feasible regions,
n always randomly generate from [10, 15], but Þxing param-
eter � = 0.005, 0.02, 0.03, 0.05, 0.08, and 0.1. We consider
three kinds of situations: 1)imax, jmax, S are generated ran-
domly from respective regions (jmax � [4, 8], imax � [10, 50],
and S � [#X / 10, #X / 15]); 2) the parameterjmax is Þxed
as speciÞc values 5, but theimax and S are generated ran-
domly from [10, 50] and [#X / 15, #X / 10], respectively; and
3) the parameterjmax, imax and S are Þxed at speciÞc values
5, 50, and #X / 12. The generation performance and learn-
ing time are shown in Fig.10. We Þnd that in Fig.10, the
mean testing RMSE for different parametersjmax, imax, S are
nearly the same. This indicates that parametersjmax, imax, and
S are not sensitive to generalization performance. The user
can choose the regions for these four parameters in PPLM
randomly at the outset without affecting the generalization
performance in the learning process. Furthermore, from these
subÞgures, it is clear that the parameter� in some cases is not
very sensitive, such as in Bank32. The mean cost values with
different values of� have no signiÞcant difference. However,
in some cases, such as Puma, the value of the parameter� is
very sensitive to the performance of PPLM. In conclusion, no
formal method is available to choose the value of the param-
eter � ; it depends on each characteristic of the real database.
However, with the results in Fig.10, we can see that� < 0.05
generally performs well. In all, we suggest Þxing� at less than
0.05 in general and the other four parameters can be generated
randomly from corresponding regions.

VI. CONCLUSION

In this paper, a new learning system called the PPLM is
proposed to further improve learning accuracy. Unlike other
NN-based methods, in this new approach similar feature data
are selected into the same region, then a multineural network
learns these regions and eventually further reduces the learn-
ing error. The experimental results show that, compared to
other NN learning methods, the proposed PPLM signiÞcantly
reduces the network output error. This means that the proposed
method tends to deliver a much better generalization perfor-
mance than other learning methods. Compared to some large
datasets such as IJCNN, Cod-RNA, and Covtype dataset, the
learning error of the PPLM can be several hundreds of times
lower than that of other learning methods.
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