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Abstract: The Dirichlet process mixture model (DPMM) with spatial constraints – e.g. hidden Markov random field (HMRF)
model – has been considered as an effective algorithm for image processing application. However, the HMRF model is
complex and time-consuming for implementation. A new DPMM has been introduced, where a generalised mean (GDM) is
selected as the spatial constraints function. The GDM is applied not only on prior probability (and posterior probability) to
incorporate local spatial information and component information, but also on conditional probability to incorporate local
spatial information and observation information. The purpose of the HMRF model and GDM are the same for incorporating
some spatial constraints into the system. However, compared to HMRF, GDM is easier, faster and simpler to implement.
Finally, a variational Bayesian approach has been adopted for parameters estimation and model selection. Experimental
results on image segmentation application demonstrate the improved performance of the proposed approach.
1 Introduction

As a Bayesian non-parametric model, the Dirichlet process
mixture model (DPMM) was introduced by Ferguson [1]
and has been very popular in statistics over the last few
years, for providing a Bayesian framework for clustering
problems with an unknown number of groups [2, 3]. The
theory behind the DPMM is based on the observation that a
countable infinite number of component distributions in an
ordinary finite mixture model tends on the limit to a
Dirichlet process (DP) [1] prior. The Markov chain Monte
Carlo (MCMC) method [4] and variational Bayesian (VB)
inference [5] are two common useful inference techniques
for parameter learning for DPMM. In [6], the DPMM is
applied in brain MRI tissue classification with more than
encouraging results obtained. In [7–9], spatial constraints
are incorporated into DPMM for image segmentation.
DPMM based not only on Gaussian distribution but also on
different distributions is introduced in [10, 11]. In [12–16],
the DPMM is adopted to the hidden Markov random field
(HMRF) model and mixture of generalised Dirichlet
distributions.
A remaining challenge of clustering approaches for image

segmentation is related to their lack of spatial structure in an
image. To overcome this shortcoming, a wide variety of
approaches have been proposed to incorporate spatial
information into the image [17–23]. A common approach is
the use of a Markov random field (MRF) [24, 25]. Such a
method aims to impose spatial smoothness constraints on
the image pixel labels. Recently, a special case of the MRF
model – the HMRF model – has been proposed [26, 27].
The state sequence of HMRF cannot be observed directly,
but can be indirectly observed through a field of
observations. In the HMRF model, the spatial information
in an image is encoded through the contextual constraints
of neighbouring pixels, which are characterised by
conditional MRF distributions. Parameter estimation in
HMRF models usually relies on maximum likelihood (ML)
or Bayesian methods [28, 29]. Besag [30] introduces the
idea of pseudo likelihood approximation when ML
estimation is intractable. Based on this well-known
approximation, various HMRF model estimation approaches
have been proposed [31–37].
The recent work for the combination of DPMM and MRF/

HMRF is illustrated in [6–11]. In this paper, we combine
DPMM with a generalised mean (GDM) instead of MRF/
HMRF for image segmentation. One drawback of MRF/
HMRF models is that they are computationally expensive to
implement, and require the additional parameter β to control
the degree of image smoothness. This additional parameter
β is usually determined by researcher’s experience. The
chosen parameter β has to be both large enough to tolerate
the noise, and small enough to preserve image sharpness
and details. With the help of GDM, our model is fully free
of the empirically adjusted parameter β. Although image
segmentation is the motivation and specific application in
this paper, the idea of combining GDM and DPMM can
also be applied to any other clustering analysis applications.
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The remainder of this paper is organised as follows: In

Section 2, we briefly introduce the mathematical
background of GDM and DPMM. In Section 3, we
introduce the proposed new DPMM and then we illustrate
how to incorporate the local spatial information into
DPMM with GDM. We also show the relationship between
our algorithm and other spatial constraints works based on
the MRF/HMRF model. The parameter learning estimated
by the VB inference algorithm is given in Section 4. The
experimental results of the proposed approach are given in
Section 5. Finally, some concluding remarks are provided.

2 Mathematical background

2.1 Generalised mean

In mathematics, a GDM, also known as a power mean is an
abstraction of the Pythagorean means, including arithmetic,
geometric and harmonic means. The GDM of a1, a2, …, an
is defined as

Mp a1, a2, . . . , an
( ) = 1

n

∑n
i=1

api

( )1/p

(1)

where ai≥ 0, p∈ [−∞, +∞] and
∑n

i=1 ai = 1.
For p→ 0, (1) approaches the geometric mean (GM)

MG a1, a2, . . . , an
( ) = ∏n

i=1

ai

( )1/n

(2)

For p = 1, (1) results in the arithmetic mean (AM)

MA a1, a2, . . . , an
( ) = 1

n

∑n
i=1

ai (3)

There are some other special cases of GDM based on different
p values. For example, if p = −1,M is a harmonic mean; for p
= 2, M is a quadratic mean; under the condition p→ −∞,
M−∞ = min(a1, a2, …, an) and the condition p→∞, M∞ =
max(a1, a2, …, an).

2.2 Dirichlet process mixture model

The DP prior introduced by Ferguson [1] is a commonly used
prior on the parameters of a mixture model with an unknown
number of mixture components. Based on the DP prior for the

random variables u∗n
{ }N

n=1
, DPMM assumes that the sample

distribution (random measure) G is drawn from a DP(G0,
α), with a base distribution (measure) G0 and a precision
parameter α. The formal notation of DP is given as follows

G| G0, a
{ } � DP G0, a

( )
u∗n|G � G (4)

Based on the relationship between the DP and generalised
Pólya urn schemes, we introduce the Pólya urn
representation [38] of DPMM, where the DP is viewed as

the limit of Pólya urn schemes. Let uc
{ }K

c=1 be the set of

distinct values taken by the variables u∗n
{ }N−1

n=1
. Denoting as

f N−1
c the number of values in u∗n

{ }N−1

n=1
that equal to θc, the
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conditional distribution of u∗N given u∗n
{ }N−1

n=1 has the form

p u∗N | u∗n
{ }N−1

n=1
, G0, a

( )
= a

a+N − 1
G0 +

∑K
c=1

f N−1
c

a+N − 1
duc

(5)

where duc denotes the distribution concentrated at single point
θc. Equation (5) shows that when considering u∗N given all

other observations u∗n
{ }N−1

n=1 , this new sample is either drawn
from base distribution G0 with probability α/(α +N− 1), or
is selected from the existing draws θc according to a
multinomial allocation, with probabilities proportional to
existing groups size f N−1

c .
The parameter α plays a balancing role between sampling a

new parameter from the base distribution G0, or sharing a
previously sampled parameter. A larger α indicates more
components, and in the limit α→∞, G→G0. On the

contrary, as α→ 0, all u∗n
{ }N−1

n=1 tend to cluster to a single
component and take on the same value.
A draw from DP may also be represented in terms of a

stick-breaking construction [39] which provides the explicit
characterisation of G. Consider two infinite collections of
independent random variables, v = vc

{ }1
c=1

and uc
{ }1

c=1
,

where vc is drawn from the beta distribution Beta(1, α), and
θc is drawn independently from the base distribution G0.
The stick-breaking representation of G is then defined as

G =
∑1
c=1

pc(v)duc (6)

where

pc(v) = vc
∏c−1

j=1

1− vj

( )
(7)

with

pc(v) [ 0, 1[ ] and
∑1
c=1

pc(v) = 1

Under the stick-breaking representation (6) of the DP, the
atoms θc can be seen as the parameters of the component
distributions of a mixture model comprising an unbounded
number of component densities. With the finite component
numbers, the modified model is known as the generalised
Dirichlet mixture model with finite Dirichlet distributions.
Let y = yn

{ }N
n=1 be a set of observations models of DPMM.

Then, each observation yn is assumed to be drawn from its
own conditional probability density function p yn|u∗n

( )
parameterised by the parameter set u∗n. Introducing the

indicator variables x = xn
( )N

n=1
, with xn = c denoting that u∗n

takes on the value of θc, the DPMM with DP priors can be
expressed as

yn|xn = c; uc � p yn|uc
( )

xn|p(v) � Mult p(v)
( )

vc|a � Beta 1, a( )
uc|G0 � G0 (8)
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where p(v) = pc(v)

( )1
c=1 is given by (7), and Mult(π(v)) is a

multinomial distribution with parameter π(v).

3 Proposed method

3.1 New DPMM with GDM (DPMM_GDM)

It is noted that finite mixture model can be considered as a
linear combination of prior probability and conditional
probability from the expression of its mathematical formula.
Traditional spatial constraints methods such as MRF/HMRF
only pay special attention on the former [40]. For
incorporating more local spatial information, in this paper,
we adopt the GDM on these two items (prior probability
and conditional probability) to make the traditional DPMM
more robust to noise for image segmentation application.
For image-processing application, let yn, with dimension d,

n = (1, 2,…, N ), denotes the intensity value at the ith pixel of
an image and let xn, n = (1, 2,…, N ), denotes the labels of the
components that yn belongs to. Then, xn = c (c = 1, 2, …, K )
denotes the corresponding c class label of the nth pixel.
Different from traditional DPMM, in our model, the new
conditional probability is defined as GDM[p(yn|θc)], where
the original conditional probability p(yn|θc) is defined in
(8). Let us assume it satisfies the Gaussian distribution and
such a model corresponds to the Gaussian DPMM. For
incorporating local spatial information in image processing,
we modify the GDM in (1) to make it not focus on pixel n,
but on the neighbourhood widow of the nth pixel. With the
help of the geometric mean, we have

p yn|uc
( ) = ∏

m[N n

p ym|uc
( )[ ]1/N n (9)

whereN n is the neighbourhood of the nth pixel, including the
nth pixel itself. In traditional DPMM, the observation yn
satisfies the conditional probability p(yn|θc). In our model,
this item is influenced by the conditional probabilities of
nth neighbourhood pixels for incorporating the local spatial
information.
It is noted that the convolution of two Gaussian functions is

still a Gaussian function. Thus, (9) can be modified as∏
m[N n

p ym|uc
( )[ ]1/N n = p yn′ |uc

( )
(10)

yn′ denotes the modified observation generated by the nth
neighbourhood pixels ym. One possible approximation may
be �yn =

∑
m[N n

ym/N n (application of AM on yn). In this
case, the proposed model degrades to the standard DPMM
after a pre-processing by applying an arithmetic mean on
image intensity value yn. However, this approximation
processing may lead to computation error. Thus, we adopt
(9) instead of (10) in this paper. It is significant to point out
that the kernel of Gaussian function p(yn|θc) can be
considered as a distance measure from observation yn to
parameter θc in standard DPMM. In our model, this
distance is measured by the modified observation yn’ to
parameter θc for incorporating spatial information and
observation information to make the model more robust to
noise.
The new DPMM with the GDM can be expressed as

yn|xn = c; uc �
∏

m[N n

p ym|uc
( )[ ]1/N n
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xn|p(v) � Mult(p(v))

vnc|an � Beta 1, an

( )
uc|G0 � G0 (11)

where p(v) = pc(v)
( )1

c=1 is given by (7), and Mult(π(v)) is
a multinomial distribution with parameter π(v). Here,
each observation yn is assumed to be drawn from
the modified conditional probability density function∏

m[N n
p ym|uc
( )[ ]1/N n parameterised by the parameter set

θc.
Another limitation of traditional DPMM is its lack of

an explicit consideration of the spatial dynamics
(interdependencies) between the neighbouring sites on the
input lattice. One possible solution is to impose an
additional MRF distribution over the component densities
[7, 8]. However, such an HMRF model is complex and
time-consuming for implementation. In this paper, we
introduce an alternative method by applying a GDM on the
component prior probability for incorporating the spatial
information and component information. Thus, the new
component prior probability is generalised by

p xn = c|p(v)( ) = ∑
m[N n

1

N n
p xm = c|p(v)( )

(12)

It is noted that the probability p(xn = c|π(v)) denotes the
‘possibility’ that observation yn belongs to class xn. This
probability may generate a wrong value under the noise
effect. In our model, this probability is influenced by the
probabilities in its neighbourhoods. As long as the signal
strength is greater than the noise strength in the
neighbourhood domain, the correct probability can always
be estimated.
The graphic model of DPMM and DPMM_GDM are

shown in Figs. 1a and b, respectively.

3.2 Connection to existing methods

Non-parametric Bayesian approaches based on DPMM have
been used in much research for image processing
applications. Among these recent works, few consider
incorporating the spatial constraints into the DPMM. The
work in [7] is based on the introduction of a spatially
constrained variant of the DP where spatial smoothness
constraints on the class assignments are enforced by an
MRF. Based on the Pólya urn representation, we have

p u∗N | u∗n
{ }N−1

n=1
,G0, a

( )
/a

Z
G0+

∑K
c=1

M u∗N | u∗n
{ }N−1

n=1

( )
f N−1
c duc

(13)

where f N−1
c is the number of distinct values in u∗n

{ }N−1
n=1 that

equal to θc, Z is a normalising constant, and

M u∗N | u∗n
{ }N−1

n=1

( )
is an MRF prior integrated in the

mechanics of the derived DP variant that enforces the
smoothness constraint (for the variables u∗n).
The work in [8, 9] introduces a model of the spatial

dynamics (interdependencies) between the neighbouring
sites on the input lattice by imposing an additional MRF
(Gibbsian) distribution over the DPMM component
densities emitting the observable data. The component prior
105
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Fig. 1 Graphic model of DPMM and DPMM_GDM

a Graph of DPMM
b Graph of proposed DPMM_GDM

www.ietdl.org
probability is given as

p xn = c|p(v), x̂∂n

( )
= p xn = c|x̂∂n ; b

( )
p xn = c|p(v)( )

(14)

where p xn = c|x̂∂n ; b
( )

are the pointwise MRF prior
probabilities of the model states obtained by application of
the mean-field like approximation [37].
From (13), we can see that [7] introduces a spatially

constrained variant of the original DP where the MRF is
imposed internally in the DP process mechanics. Different
from [7], we can observe from (14) that [8, 9] imposes an
(approximate) Markov–Gibbsian field directly on the
component labels x, but not on the parameter u∗n.
Comparing (12) with (13) and (14), in our model, we not
only apply the GDM on the component labels x but also on
the conditional probability p(yn|θc). It is noted that [7]
adopts Pólya urn representation and the MCMC algorithm,
and [8, 9] exploits the stick-breaking representation and VB
inference algorithm. However, our method does not concern
the DP representation and parameter learning algorithm, but
focuses on the spatial constraints to incorporate local spatial
information.
4 Variational approximation

To obtain the estimation of parameters, we maximise the
marginal likelihood p(y) by integrating out the variables as
follows

p(y) =
∫
p y, C
( )

dC (15)

where Ψ = {v, α, x, θ} denotes the set of variables. Here, both
the latent variables and model parameters are treated as
stochastic model variables. The distribution of variables v
and x is given in (11). We then choose the Gamma and the
normal-Wishart distribution as the priors for variables α and
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θ as follows

p an

( ) = G an|hn1, hn2

( )
(16)

p uc
( ) = p mc, Rc

( ) = NW mc, Rc|lc, mc, vc, wc

( )
(17)

It is noted that separate normal and Wishart priors can also be
imposed over the means and precisions of the Gaussian
distribution, respectively [41, 42]. However, considering the
correlations of these variables, we select the normal-Wishart
distribution priors to make the model less sensitive to
outliers [43].
The integral in (15) denotes the joint integration over

continuous variables {v, α, μ, R} and the summation over
discrete variables x. Since the integration in (15) is
intractable, an alternative way to solve this problem is by
using the VB method, which aims to maximise a lower
bound L of the logarithmic marginal likelihood p(y)

L(q) =
∫
q(C) log

p(y, C)

q(C)
dC ≤ log p(y) (18)

where q(Ψ) is an arbitrary distribution that provides an
approximation to the true posterior distribution p(Ψ|y). We
see that the function L(q) forms a rigorous lower bound on
the true log marginal likelihood. Although the computation
of the original log likelihood function log p(y) is not
tractable, the lower bound L(q) may be tractable enough to
compute by choosing a suitable form for the q distribution.
The difference between the lower bound L(q) and the true
log likelihood log p(y) is the Kullback–Leibler (KL)
divergence. The KL divergence is non-negative and is zero
when the variational posterior is equal to the true posterior
q(Ψ) = p(Ψ|y). The goal in a variational approach is to
choose a suitable form for q, such that the lower bound
becomes maximised – that is, the KL divergence becomes
minimised. For this purpose, we approximate p while
optimising q by minimising the KL divergence. To make
progress, we assume a factorised variational distribution of
IET Image Process., 2014, Vol. 8, Iss. 2, pp. 103–111
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the form

q(C) = q(x)q(a)q(v)q(u) (19)

Factorisation of q(Ψ) of the form (19) is a common approach
and has been successfully used in VB inference [42–44].
Minimising the KL divergence with respect to all possible
function forms of q, the standard variational approach
provides the following general form of the solutions

q Ci

( ) = expklog p y, C
( )

lk=i�
expklog p y, C

( )
lk=idCi

(20)

where k·lk=i denotes an expectation with respect to the
distributions qk(Ψk) for all k≠ i. In (20), the marginal
distributions under which the expectations are taken are the
Markov blanket of the marginal in question. It is noticed
that the optimal variational posteriors are expected to take
the same functional form as the corresponding conjugate
priors [45]. Thus, the factors of the variational posterior are
given by calculation of (20) as follows

q(vnc) = Beta bnc,1, bnc,2

( )
(21)

where

bnc,1 = 1+ q xn = c
( )

bnc,2 = kanl+
∑K

c′=c+1

q xn = c′
( )

(22)
Fig. 2 Some segmentation results obtained from the evaluated algorith

First column: Original images from Berkeley image data set. Second column: Result
column: Results of the DPMM_GDM
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and

q an

( ) = G an|h̃n1, h̃n2

( )
(23)

where

h̃n1 = hn1 + K + 1

h̃n2 = hn2 −
∑K−1

c=1

c bnc,2

( )− c bnc,1 + bnc,2

( )[ ]
(24)

and kanl = h̃n1/h̃n2, c ·( ) denotes the digamma function.
Similarly, let us consider the posteriors over the variable θ

q uc
( ) = q mc, Rc

( ) = NW mc, Rc|l̃c, m̃c, ṽc, w̃c

( )
(25)

where we first introduce the notation

g̃c =
∑N
n=1

q xn = c
( )

�yc =

∑N
n=1

∑
m[N n

1

N n
q xn = c
( )

ym

g̃c

Dc =
∑N
n=1

∑
m[N n

1

N n
q xn = c
( )

ym − �yc
( )

ym − �yc
( )T

(26)

Then, we have
ms

s of the MDP/MRF in [7]. Third column: Results of the IHMRF in [8]. Fourth
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Table 1 Comparison of different methods for Berkeley image
data set, probabilistic rand (PR) index (%)

Image # MDP/MRF IHMRF DPMM_GDM

126007 80.32 81.76 90.87
220075 71.05 75.15 76.11
38092 80.91 81.83 81.26
130026 50.02 49.22 50.67
385039 74.54 82.24 85.87
170057 76.97 77.05 81.29
223061 +
Gaussian noise
(mean = 0,
variance = 0.02)

70.01 68.50 71.17

101085 +
Gaussian noise
(mean = 0,
variance = 0.02)

76.59 72.05 73.33

mean 72.55 73.48 76.32
computation
time

488.99 s 1065.1 s 390.98 s

www.ietdl.org
l̃c = lc + g̃c

m̃c =
lcmc + g̃c�yc

l̃c

ṽc = vc + g̃c

w̃c = wc + Dc +
lcg̃c

lc + g̃c
mc − �yc
( )

mc − �yc
( )T

(27)

Finally, the component posterior probability is generalised by

q xn = c
( ) = ∑

m[N n

1

N n
p̃mc(v)p̃ y′m|uc

( )[ ]
(28)

p̃mc(v) = exp klogpmc(v)l
( )

= exp
∑c−1

j=1
klog

(
1− vmj

)
l+ klog vmcl

[ ]
(29)

with

klog vmcl = c bmc,1

( )− c bmc,1 + bmc,2

( )
klog(1− vmc)l = c bmc,2

( )− c bmc,1 + bmc,2

( )
(30)

and

p̃ y′m|uc
( ) = exp klog p y′m|uc

( )
l

( )
= exp

∑
m′[Nm

1

N m
klog p ym′ |uc

( )
l

⎡
⎣

⎤
⎦ (31)

where

klog p(ym′ |uc)l = − d

2
log 2p+ 1

2 klog Rc

∣∣ ∣∣l
− 1

2 k ym′ − mc

( )T
Rc ym′ − mc

( )
l

Fig. 3 RGB image segmentation with image noise

a Original image
b Noised image
c MDP/MRF, PR = 0.8065, t = 400 s
d IHMRF, PR = 0.7952, t = 305.91 s
e Proposed, PR = 0.8577, t = 132.11 s
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where

k(ym′ − mc)TRc(ym′ − mc)l =
d

l̃c
+ ṽc ym′ − m̃c

( )T
× w̃−1

c ym′ − m̃c

( )

klog Rc

∣∣ ∣∣l = − log
w̃c

2

∣∣∣∣
∣∣∣∣+∑d

k=1

c
ṽc + 1− k

2

( )

5 Experimental results and discussion

In this section, we experimentally evaluate our algorithm in a
set of real images and a multidimensional noised image. We
also evaluate MDP/MRF [7] and IHMRF [8, 9] for fair
comparison. The source codes for the MDP/MRF and
IHMRF algorithms can be downloaded from the authors’
websites. Our experiments have been developed in
MATLAB R2009b, and are executed on an Intel Pentium
Dual-Core 2.2 GHz CPU, 2GB RAM.
IET Image Process., 2014, Vol. 8, Iss. 2, pp. 103–111
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Fig. 4 Some segmentation results of horses

First column: Original images fromWeizmann horse data set. Second column: Results of the MDP/MRF in [7]. Third column: Results of the IHMRF in [8]. Fourth
column: Results of the proposed DPMM_GDM

www.ietdl.org
In the first experiment, we evaluate the performance of
different methods based on a subset of the Berkeley image
data set [46], which comprises a set of real-world colour
IET Image Process., 2014, Vol. 8, Iss. 2, pp. 103–111
doi: 10.1049/iet-ipr.2013.0232
images along with segmentation maps provided by different
individuals. We employ the probabilistic rand (PR) index
[47] to evaluate the performance of the proposed method,
109
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with the multiple ground truths available for each image
within the data set. It has been shown that the PR index
possesses the desirable property of being robust to
segmentation maps that result from splitting or merging
segments of the ground truth [48]. The PR index takes
values between 0 and 1, with values closer to 0 (indicating
an inferior segmentation result) and values closer to 1
(indicating a better result).
Fig. 2 shows the original images and the segmentation

results obtained by the evaluated methods. Table 1 presents
the average PR values for all methods. Compared to other
methods, the proposed method yields the best segmentation
results with the highest PR values. From the images on the
second row of Fig. 2, it can be seen that MDP/MRF and
IHMRF misclassify some portions of pixels at the edge
region between the sky and the mountain at the middle-left
of the image. In contrast, the proposed DPMM_GDM
segments the image well and shows perfect results. From
the images on the fourth row of Fig. 2, we can observe that
our DPMM_GDM can distinguish the sky and the top parts
of the building well even if the image is corrupted by the
Gaussian noise. This is expected due to the fact that the
existing methods only consider some constrains on
component labels. Different from previous methods, we not
only consider component labels but also consider some
constraints on the conditional probabilities (distributions).
We also evaluate the computation time for all methods in

the previous experiment. The average computation time t
(in seconds) of the different methods is presented on the
last line of Table 1. It is noted that the computation of our
methods is much faster than that of other methods. This
may be the contribution of the usage of simple GDM
instead of complex MRF in our model. Compared to other
methods, our algorithm can be calculated most quickly and
achieve the best segmentation results.
In the second experiment, we try to segment the

multidimensional RGB colour image into three classes: the
blue sky, the red roof and the white wall. The original
image (481 × 321) shown in Fig. 3a is corrupted by heavy
Gaussian noise, with mean = 0 and variance = 0.05. The
noised image is shown in Fig. 3b, and the segmentation
results of MDP/MRF, IHMRF and our DPMM_GDM are
shown in Figs. 3c–e, respectively. The accuracy of
segmentation for MDP/MRF is quite poor. Although
IHMRF obtains better results, it is still sensitive to heavy
noise. The accuracy of the segmentation result from the
proposed method, as shown in Fig. 3e, is better than that of
other methods, obtaining the highest PR values.
In the last experiment, we use the Weizmann data set [49,

50], which contains 328 images of horses with different
poses, sizes, face directions, backgrounds and illumination
conditions. There is only one horse in each image, and
there is a single object category in the data set: horse. The
segmentation results of different methods are shown in
Fig. 4, from which we can see that the proposed method
obtains the best performance compared with its competitors.
From Fig. 4, we can observe that MDP/MRF always
misclassifies some pixels in the background – for example,
lawn in the second and fourth row image, water in the third
row image. One major problem with IHMRF is that it is
more likely to separate parts from the same object into
different segments. For example, it misclassifies some back
parts of the horse in the first and fourth row image. IHMRF
also ‘ignores’ some pixels of the horse’s legs and tail in the
second and third row images, respectively. Moreover, in the
fifth row image, IHMRF segments the object (horse) and
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background (sun) into the same group. However, the
segmentation results of DPMM_GDM do not show these
phenomena. Therefore, we argue that enforcing spatial
coherence between adjacent regions via DPMM_GDM
avoids separating parts of the same object into different
groups.

6 Conclusions

In this paper, we first introduce a new DPMM and then use
GDM for incorporating the local spatial information,
observation information and component information.
Compared to traditional spatial constraints methods – for
example, MRF/HMRF algorithm – our algorithm is simple,
easy and effective for implementation. Moreover, MRF/
HMRF needs the additional parameter β to keep a balance
between robustness to noise and image sharpness and
details. Different from the MRF/HMRF model, our model
is fully free of the empirically adjusted parameter β.
Empirical studies on two image data sets demonstrate the
improvement of our model in image segmentation. Finally,
in this paper, we focus on Gaussian DPMM. In fact, our
algorithm is general enough and can be applied to other
finite mixture models [45, 51].
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