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Abstract—the combination of outputs of single classifiers for
human action recognition is proposed and evaluated in this
paper. Combining the outputs of individual classifiers leads to
having a more accurate and robust-applicable framework by
reducing the risk of a weak choice of a classifier or a set of
features. The weakness of single classifiers becomes more bold
when the problem difficulty increases, particularly while having
numerous action types or similarity of actions. In this paper,
the individual support vector machines (SVMs) are trained
using diverse feature sets from different perspectives. Then, the
outputs of single SVMs are fused by employing the algebraic
combinations and Dempster Shafer fusion methods. The
experimental results show that the action recognition accuracy
is improved while employing the algebraic combinations to fuse
the outputs of single classifiers.

Keywords—Action Recognition, Ensemble of Classifiers, Demp-
ster Shafer Fusion, Algebraic Combinations of Single Classifiers

I. INTRODUCTION

Human action recognition is considered as one of the active

research topics due to its variety of real-world applications

in video surveillance, gaming, health care, human computer

interaction, and video retrieval. Although gesture and action

recognition is a growing research area in computer vision, it

is still a challenging problem due to the intra-class variations

which are derived by factors such as the style and duration

of a specified action. In addition to the intra-class variations,

motion clutter caused by moving background objects, variabil-

ity due to camera motion, and computational challenges due

to the huge amount of data are considered as major action

recognition challenges.

Activity recognition is a multi-class classification problem

where each target class is assigned to a specific action type.

An action classification system consists of two main stages:

first, the features are selected, described, and encoded. Then,

the extracted feature are fed to a learning model to recognize

actions. In such a system, an efficient feature set can reduce

the burden of the classification algorithm. However, a powerful

classification algorithm is able to classify actions with high

accuracy even with a low discriminative feature set.

Computer vision scientists have been working to evaluate

different visual descriptions and representations for video

which are well-suited for action recognition problems. The

performances of different representations are typically eval-

uated on benchmark datasets [4]. Different feature sets are

fed to classifiers to identify the superiority of some visual

descriptions and representations over the others [4]. Histogram

of Oriented Gradients (HOG), Histograms of Optical Flow

(HOF), Motion Boundary Histograms (MBH), and trajectory

approaches are the low-level features descriptors which attain

remarkable results on different datasets compared to the other

state-of-the-art descriptors [4]. Based on the recent research

presented in [4], the Fisher Vector encoding is considered

as one the most efficient encoding approaches for action

recognition.

Generally, the power of several representation or descrip-

tion techniques can be modified by employing the following

methods: The first method is to merge the extracted feature

sets, which is called early fusion, and then to feed this higher

dimensional feature set to an individual classifier. The second

method is to train several individual classifiers, each trained

on a separated feature set, and then efficiently fuse the outputs

of single classifiers in a late fusion model. It should be noted

that the discriminative power of encoded feature sets can not

be completely utilized while employing individual classifiers.

In other words, while dealing with difficult action recognition

problems, mainly when working with many action types and/

or having resemblance between actions, the single classifiers

are not able to accurately categorize actions. Therefore, an

ensemble classification framework must be employed to boost

the recognition performance, where each combination of a

feature set and a single classifier is a human action learner

[2]. As stated in [3], a strategic combination of the learners

can significantly enhance the classification accuracy. In [3], the

Dempster-Shafer and algebraic fusion methods are employed

to fuse the outputs of several single classifiers. The joint effi-

ciency of the ensemble of multiple classifiers can compensate

for a deficiency in one learner while employing the fusion over

several single classifiers [3].

The ensemble of classifiers has been presented to recognize

actions using the dense trajectory features and bag of words

encoding algorithm in [2]. However, we have utilized the

improved dense trajectory and Fisher Vector encoding to

extract and encode feature sets as presented in [1]. Then, the

encoded feature sets are fed to the individual SVMs separately,

and finally the outputs of single SVMs are fused to recognize

actions. In addition to the DS fusion method which has been

used in [2], product, mean, and maximum rules from the

algebraic fusion techniques are implemented and evaluated in
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Fig. 1. The general action recognition framework

this paper.
The rest of the paper is organized as follows. The problem

statements and related works about action recognition systems

are briefly explained in Section 2. Section 3 describes the

proposed framework to boost the action recognition perfor-

mance. The experimental setup and results are demonstrated

and evaluated in Section 4. Finally, the conclusion is presented

in Section5.

II. RELATED WORK

The general action recognition framework typically consists

of feature extraction, feature representation, and classification

phases as shown in Fig. 1. It should be noted that the key

problem for successful action recognition is how to extract

informative and robust features from the temporal motion

and spatial gradient information. Numerous algorithms have

been presented for feature extraction from videos. Local

feature detection is considered as one of the most efficient

approaches for action recognition. The main advantage of the

local feature based methods is that no information on human

body model or localization of people is required [4]. Local

features are extracted by employing a local feature detector

and then by encoding spatio-temporal neighbourhoods around

the detected features using a local feature descriptor [5]. Local

feature detectors for videos are divided into two following

categories: spatio-temporal interest point (STIP) detector [5]

and trajectory detector [6].
Action recognition with dense trajectories is presented in

[6] and has been improved recently [1]. The motivation of the

improvement was to remove spurious trajectories derived from

camera motion in realistic videos. In the improved version,

following the robust achievement of dense sampling over

sparse sampling methods in the image domain, points are

sampled densely from a multi scale pyramid by means of

analysing each frame of a given video [1]. Then, the tracking

of the detected points is performed for a certain time window.

The dense optical flow field computation [7] is employed for

tracking. It should be noted that the stated dense optical flow is

applied on each spatial scale individually. Using a homograph

matrix between sequential frames, it is possible to compensate

for the camera motion to some degree [1]. Once the camera

motion is known, the optical flow field can be re-computed

to correct for such motion. In the next step, local descriptors,

which are aligned with the trajectories, are extracted to encode

local motion information. For each trajectory, 96-dimensional

HOG, 108-dimensional HOF, and 192-dimensional MBH for

x and y axis, and 30-dimensional trajectory features were

extracted. All these descriptors are based on one-dimensional

histogram of individual features. With this improvement, a

very robust and accurate descriptors’ performance is achieved

in benchmark action recognition datasets [1].

The local descriptors that are derived from the space-time

volume must be represented by a fixed size vector. Traditional

methods learn a codebook from the training descriptors, and

employ this codebook as a visual vocabulary to encode the

local descriptors. The Bag of features (BOF) method has

been widely used and adopted as the main model for video

representation by pooling the local descriptors [8]. The general

framework for traditional BOF contains local feature extrac-

tion, visual dictionary production with a clustering algorithm

such as k-means and feature encoding. A better encoding

approach, namely Fisher Vector (FV) representation, has been

presented recently and increased the accuracy of recognition

performance [9]. It should be noted that the FV approach does

not represent features as a combination of visual words, but

instead it represents differences between features and visual

words. FV creates a visual vocabulary by clustering local

features, extracted from the training videos, where clustering is

done with Gaussian Mixture Model (GMM). Then, it captures

the average first and second order differences between local

features and visual vocabularies [9].

The classification is the last stage in the action recognition

framework, where the SVM approach is a common classifier.

SVMs maximize the distance between a hyperplane that

divides two classes of data and instances on either side of

it. Linear and non-linear separations can be performed using

a kernel function in a SVM classifier. Moreover, they reach

the global minimum and avoid ending in a local minimum

[10]. According to the authors of [11], SVMs achieve the best

accuracy in general, in comparison with the Decision Trees,

Neural Networks, Nave Bayes, k-NN, and Rule-learners. They

are also at least as good as others in speed of classifica-

tion, tolerance to irrelevant attributes, tolerance to redundant

attributes, and tolerance to highly interdependent attributes.

Therefore, the SVM is considered as one of the most popular

classifiers for action recognition. However, using a single

classifier to classify patterns has been recently challenged by

multiple classifier approaches, where the classification system

is derived from an ensemble of single classifiers whose outputs

are pooled in some way to attain a more accurate final

classification decision. In an ensemble classification approach,
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each single classifier will focus on diverse aspects of the data

and will err under different situations. It should be noted that

single classifiers errors have to be uncorrelated in an ensemble

classification system [3]. Consequently, the total errors can be

reduced by an applicable combination of the single classifiers

if each single classifier makes different errors.

An ensemble of SVMs, which is presented in [2], has been

implemented for action recognition using the dense trajectory

feature sets. As presented in [2], the BOF representation

approach has been performed to encode the descriptors. Then,

several single classifiers have been trained on different feature

sets, and then fused using the DS fusion algorithm. In our

paper, the improved dense trajectory along with the fisher

vector encoding are employed to create the feature sets.

The reason of choosing the FV method is that the achieved

recognition accuracy using the FV is significantly higher than

BOF using single classifiers [4]. In the classification stage,

aside from the DS fusion, the product, mean, and maximum

rules from the algebraic combination methods are employed

to fuse the outputs of several individual classifiers [15]. To

the best of our knowledge, human action recognition using

the improved dense trajectory, FV encoding, and ensemble of

SVMs by means of the algebraic combinations has not been

implemented and evaluated previously.

III. PROPOSED ACTION RECOGNITION

The efficiency of pattern classification using an individual

classifier has been recently challenged by multiple classi-

fier systems [3]. The underlying idea behind the ensemble

of classifiers is that instead of employing a very complex

representation/ learning technique, the action categories can

be classified using a set of relatively simple and diverse

classifiers, each trained with different feature sets [2]. In an

ensemble classification system, it is hoped that each individual

classifier will focus on different aspects of the data and will

err under different situations [3].

In this work, as shown in Fig. 2, the encoded data from

the individual descriptors are fed to the single classifiers

separately. Then, the outputs of single classifiers are fused to

classify actions. A combination function is employed to merge

the outputs of single classifiers. A variety of combination

functions to fuse the single classifiers have been presented in

[3]. In this paper, the Dempster-Shafer (DS) fusion, product,

mean, and maximum rules from the algebraic combination

methods have been used to combine the outputs of single

classifiers. The stated fusion methods make an ensemble of

classifiers by observing the outputs of single classifiers as a

measure of evidence which is derived from the source that is

generated from the training data. This section briefly describes

the feature extraction, encoding, and fusion methods which are

employed in this paper.

A. Feature Extraction

The Improved Dense Trajectory (iDT) method , which has

been introduced in [1], is employed for feature extraction. In

the iDT, each frame of the video is analysed to sample the

Fig. 2. Bold arrows stand for the three separated descriptors (HOG, HOF,
and MBH); τ and γ respectively stand for the training and testing splits from
the three separated descriptors; δ stands for the GMM vocabularies from the
training data of three stated descriptors; ψ stands for the training feature sets
encoded by the fisher vector; ϕ stands for the testing feature sets encoded by
the fisher vector

points densely from a multi scale pyramid. Then, the sampled

points are tracked for a given time window. It should be noted

that the employed tracking is based on dense optical flow field

computation [7] and is applied on each spatial scale separately.

Finally, local descriptor extractions are performed to encode

local motion information.

For each trajectory, three descriptors (HOF, MBH, and

HOG) are computed in the space-time volume with exactly the

same parameters as stated in [6]. HOF and MBH are based on

optical flow, and capture motion information. The orientation

of flow vectors are quantized using the HOF descriptor.

However, MBH divides the optical flow into horizontal and

vertical components. Then, the derivatives of each component

are computed by MBH descriptor. HOG is based on the

orientation of image gradients, and measures the information

from static appearance. The employed dimensions of the HOG,

HOF, and MBH for x and y axis are 96, 108, 96 and 96

respectively as stated in [1].

B. Feature Encoding

The Fisher Vector (FV) approach is employed to encode the

data from descriptors. FV has been reported to consistently

boost the classification performance [16]. Another significant
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advantage of FV encoding is its good performance using fast

linear classifiers. Encoding the visual vocabularies using FV

has been proposed by [12]. FV requires Gaussian Mixture

Models (GMMs) to shape the vocabulary, so that it encodes

both first and second order statistics. The difference among

pooled descriptors and the vocabulary is calculated by apply-

ing derivative operations on the likelihood with respect to the

distribution parameters of the vocabulary. Even though MBH

on x and y axis, HOF and HOG are all histogram based

descriptors, they carry different information from different

perspectives. Consequently, separate GMMs are learnt for

each aspect. Four different Fisher vectors are produced using

the four separated aspects. Each FV is normalized separately

before feeding to single classifiers. The normalization is per-

formed by sign square-rooting (power normalization) followed

by L2 normalization [12].

The GMM including K components is trained to learn the

parameters λ = {ωk, μk,Σk}|k
k=1

over a random subset of the

training features. It should be noted that using all training

descriptors is computationally expensive and requires large

amounts of memory. Thus, the procedure of random subset

selection is considered as a common practice in this case.

We randomly select 1000 features from each descriptor. The

random selection of features should not change the distribution

we want to learn. Since the covariance matrices are considered

to be diagonal, the PCA approach is applied prior to building

vocabulary for decreasing the size of the resulting FV and

to decorrelate features to support the diagonal covariance

assumption. In this paper, K is considered to be equal to 128

and each descriptor is reduced to 64 dimensions. Given a video

with a set of descriptors {x1, ..., xn}, the FV becomes the

concatenation of the normalized partial derivatives of means

and deviations, uk and vk as stated below:

uk =
1

N
√
ωk

N∑

i=1

γki(
xi − μk

Σk
) (1)

vk =
1

N
√
2ωk

N∑

i=1

γki[(
xi − μk

Σk
)2 − 1] (2)

where γki is the posterior probability that signifies each vector

with a component k in the GMM [12]. The final dimension

of the data derived from the FV encoding approach becomes

2DK, where D is the dimension of the descriptors.

C. Combining Ensemble Members

The single SVM classifiers are trained using different fea-

ture sets that are encoded by the Fisher Vector. Then, the

outputs of single classifiers are fused to make the final decision

for the test samples. A decision profile, as shown in Fig. 3,

is employed to discover the overall support for each class,

and then to label the test sample as the class with the largest

support. It should be noted that the outputs of a single classifier

for each class are interpreted as the degree of support given

to that class, and under certain conditions are described as an

estimate of the posterior probability for that class [15].

In a decision profile, each classifier Di in the ensemble

E = {D1, D2, ..., DL} results c degrees of support considering

x ∈ �n to be a feature vector and Ω = {ω1, ω2, ω3, ..., ωc} to

be the set of class labels. All defined c degrees of support are

considered to be in the interval [0, 1]. Classifier Di defines that

x comes from class ωj by showing the di,j(X) support. The

class label ωj is assigned to an instance, if the support of that

class is the largest one compare to other supports. Fig. 3 shows

the desicion profile (DP (X)) using the results of L classifiers

for a particular instance X . The fusions of degrees of supports

in a decision profile are performed by the Dempster Shafer and

algebraic fusion methods which are briefly explained in this

section.

Fig. 3. α presents the output of classifier Di(X); β presents the support
from classifires D1, ..., DL for the class ωj

1) Dempster Shapher Fusion: : The following four stages

are performed to predict the target class of each test sample:

First, the decision templates are made by calculating the

means of the decision profiles for all training samples belong-

ing to the given class:

DTj =
1

Nj

∑

zk∈ωj

DP (zk) (3)

Second, the proximity is calculated between the decision

templates and the output of classifiers as follows:

φj,i(X) =
(1 + ||DT i

j −Di(X)||−1

∑c
k=1 (1 + ||DT i

j −Di(X)||−1
(4)

where DT i
j refers to the i-th row of the decision template

DTj , and Di denote the output of the i-th classifier (the i-th
row of the decision profile DP (X)). The ‖.‖ is a matrix norm

in Eq. 4.

Third, the belief degrees are computed for each class and

classification to show how a test sample is correctly assigned

into a given class by a given classifier:

bj(Di(X)) =
φj,i(X)Πk �=j(1− φk,i(X))

1− φj,i(X)[1−Πk �=j(1− φk,i(X))]
(5)

Finally, the Dempster rule is used to combine the belief

degrees which are attained for each of the single classifiers.

The Dempster rule states that the belief degrees from each

classifier must be multiplied to achieve the final support for

each class:

μj(X) = K Π
i=1

bj(Di(X)), j = 1, ..., c (6)
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2) Algebraic Combiners: : The mean, maximum, and prod-

uct rules are employed as the algebraic combiners to fuse the

outputs of single classifiers [15]. In the pruduct rule, the total

support for each class is calculated using a simple algebraic

function of the supports received by single classifiers. As

stated in Fig. 3, in the decision profile, each column represents

the supports from classifiers and each row shows the outputs

of each single classifier. The total obtained support for class

ωj is obtained from the column j of the decision profile as

follows:

μj(X) = F [d1,j(X), ..., di,j(X), ..., dL,j(X)] (7)

where F is the following function called product combination

rule:

μj(X) =
1

L

L∏

i=1

di,j(X) (8)

The product rule selects the class whose product of supports

from each classifier is the highest. In other words, the final

decision is the class ωj for which the total support μj(X) is

the highest. It should be noted that the Product Rule decimates

any class that obtains at least one zero or very small support

due to the nulling nature of multiplying by zero.

For the mean rule, the support for a given class is the

average of all classifiers’ outputs for that given class as stated

in Eq. 3. Thus, the F function is considered as an averaging

function for the mean rule fusion. The final decision is the

class ωj for which the total support μj(X) is the highest.

The maximum rule simply takes the maximum among the

classifiers individual outputs where the ensemble decision is

chosen as the class for which total support is largest.

D. Action Classification Approaches

Five approaches to recognize action categories are used and

evaluated in this work. The first method is the baseline for

comparing with the ensemble-based classifiers. As the first

approach, the extracted feature sets are represented by Fisher

Vector encoding and then merged. Consequently, a higher

dimensional feature set is created by merging the individual

feature sets. Then, this merged feature set is fed to a single

SVM classifier to recognize action classes. As the second,

third, fourth, and fifth methods, different feature sets are

encoded using the FV encoding representation method. The

employed feature sets are presented in the first column of table.

1. Then, each feature set is fed into its corresponding classifier.

Finally, the outputs of these single classifiers are fused using

the DS, and three algebraic combiners (product rule, mean

rule, and maximum rule fusion methods).

IV. EXPERIMENTAL SETUP AND RESULTS

In this paper, the issue of automatic recognition is addressed

for human action recognition via supervised learning. It means

that for every training video we know which action or actions

it contains. The action models are learnt using training videos,

and then these actions are recognized in new, unseen videos,

i.e. videos for which we do not have annotations. This section

briefly describes the procedure to implement the proposed

method and describes the datasets which have been used to

evaluate the recognition performance.

A. Datasets

The UCF 101, UCF Sports, and Weizmann datasets are

used to evaluate the proposed method. UCF101 is a data set

including 13320 videos and 101 action categories, consisting

of realistic videos taken from YouTube [14]. UCF 101 is

considered as a very challenging dataset due to large variations

in camera motion, object appearance and pose, object scale,

viewpoint, cluttered background, and illumination conditions

[14]. The videos in 101 action categories are grouped into

25 sections, where each group consists of 4 to 7 videos of an

action. It should be noted that the videos from the same group

may share some common features, such as similar background

and viewpoint. To divide all instances into train and test sets,

the division procedure proposed by the authors of UCF101 is

followed [14].

UCF Sports dataset consists of a set of actions from various

sports which are typically featured on broadcast television

channels [17, 18]. The dataset contains a total of 150 sample

videos with the resolution of 720 by 480. The selection of

videos represents a natural pool of actions with a variety of

scenes and viewpoints.

The Weizmann Action Recognition dataset contains videos

of 10 types of human actions [19]. Each action is implemented

by 9 different people. Videos are captured with 180 by 144

pixels spatial resolution and 50 frames per second frame rate.

In total, the dataset consists of 90 video sequences [19]. It

should be noted that the low resolution videos, various people,

and cloth variations are considered as the main challenges of

the Weizmann dataset.

B. Classification

A set of visual feature sets are extracted using the most

popular state-of-the-art descriptors for local features: His-

togram of Oriented Gradients (HOG), Histogram of Optical

Flow (HOF), and Motion Boundary Histograms (MBH) for x
and y axis. The extracted feature sets are encoded using the

Fisher Vector (FV) encoding method. The employed codebook

size for the Gaussian Mixture Model in the FV encoding

approach is 128. Then, the action learning models are trained

by feeding the individual encoded feature sets to the single

classifiers. For the classification, the SVM classifier with a

cost equal to 100 and the linear kernel has been used as

the single classifier. Next, the outputs of single classifiers are

fused using the Dempster Shapher, product rule, mean rule,

and maximum rule combiners. It should be noted that the

individual classifiers are trained using different feature sets

with a variety of dimensions in both feature space and sample

length. As a result, it is shown that the derived predictions from

single classifiers can be combined to boost the recognition

performance. Following the multiple classifier philosophy, it

is proofed that the proposed ensemble approach based on the
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TABLE I
ACCURACIES OF ACTION RECOGNITION USING ENSEMBLE OF CLASSIFIERS

Feature Sets Fusion Method UCF101 Dataset UCF Sports Dataset Weizmann Dataset

HOG, HOF, MBH-x, and MBH-y DS Fusion 84.42% 83.14% 96.77%
HOF and Merged HOG-MBH DS Fusion 83.88% 81.71% 95.70%
HOG and Merged HOF-MBH DS Fusion 82.73% 81.71% 93.55%

HOF, HOG, MBH DS Fusion 81.74% 83.14% 96.77%
HOG, HOF, MBH-x, and MBH-y Mean Rule Fusion 86.21% 84.57% 96.77%

HOF and Merged HOG-MBH Mean Rule Fusion 85.72% 82.43% 95.70%
HOG and Merged HOF-MBH Mean Rule Fusion 84.92% 82.43% 91.40%

HOF, HOG, MBH Mean Rule Fusion 85.06% 81.71% 96.77%
HOG, HOF, MBH-x, and MBH-y Maximum Rule Fusion 84.92% 81.00% 93.55%

HOF and Merged HOG-MBH Maximum Rule Fusion 85.16% 82.43% 95.70%
HOG and Merged HOF-MBH Maximum Rule Fusion 84.42% 81.71% 92.47%

HOF, HOG, MBH Maximum Rule Fusion 84.02% 81.71% 94.62%
HOG, HOF, MBH-x, and MBH-y Product Rule Fusion 83.88% 83.86% 96.77%

HOG and Merged HOF-MBH Product Rule Fusion 85.76% 81.71% 91.40%
HOF, HOG, MBH Product Rule Fusion 86.16% 81.71% 95.70%

HOF and Merged HOG-MBH Product Rule Fusion 86.21% 81.71% 95.70%

product and mean rules outperforms standard non-ensemble

strategies and other fusion methods for action recognition.

It bears mentioning that the Weizmann and UCF Sports

datasets are evaluated using the Leave-One-Out cross-

validation scheme. This scheme takes out one sample video

for testing, and trains using all of the remaining videos of an

action class. This is implemented for all the sample videos

in a cyclic manner, and the overall accuracy is calculated by

averaging the accuracy of all iterations. However, for the UCF

101 dataset, the proposed evaluation method in [14] has been

employed to calculate the recognition performance.

C. Fusion Models

Several models of single classifiers have been trained using

different feature sets to create the ensemble of classifiers. First,

four seperated feature sets (MBH on x and y axis, HOG, and

HOF) are trained by single SVMs and then fused using the

DS, product, mean, and maximum fusion methods. Secondly,

the MBH features on x and y axis were merged to yield a

single MBH feature set. Thus, HOG, HOF, and MBH feature

sets are trained using single SVMs and then fused in the next

step. Third, HOF and MBH were merged to generate a single

feature set. Then, the single SVMs were trained by the new

merged HOF-MBH feature set and individual HOG. Fourth,

The HOG and MBH feature sets were merged and with single

HOF feature set have been used to train two single classifiers.

Finally, all the feature sets are merged and then a single SVM

classifier has been employed to train the merged feature sets.

D. Results

The attained recognition accuracies using Dempster Shafer,

mean, maximum, and product fusion methods on the UCF101,

UCF Sports, and Weizmann datasets are presented in table 1.

In addition to the fusion methods, the accuracies of individual

classifiers, each trained on separated feature sets, are shown in

table 2. For each dataset, the highest achieved accuracy using

specific feature sets is bold in both tables. The highest accuracy

for the ensemble approaches are attained by training four

single SVM classifiers based on HOF, HOG , and MBH for x

TABLE II
ACCURACIES OF ACTION RECOGNITION USING SINGLE CLASSIFIERS

Feature Set UCF101 UCF Sports Weizmann

HOG 74.84% 76.00% 84.95%
HOF 78.88% 80.29% 92.47%

MBH on x axis 77.82% 75.29% 93.55%
MBH on y axisy 78.15% 70.29% 78.49%

Merged of MBH-x and MBH-y 78.93% 79.57% 88.17%
Early Fusion of All Features 85.06% 83.86% 92.47%

and y axis descriptors, and fusion the outputs of these single

classifiers using the mean rule approach. As shown in tables

1 and 2, the accuracy of ensemble of classifiers using mean

rule fusion is higher than the accuracy of single classifiers

even though using a merged feature set (early fusion) to train

a single classifier. It must be noted that the score level fusion

based on the product rule combination has improved the results

for the UCF101 and Weizmann datasets due to the decimation

of any class that obtains at least one zero or very small support

respect to the nulling nature of multiplying by zero.

V. CONCLUSION AND FUTURE WORKS

In this paper, the issue of automatic recognition is ad-

dressed for human action recognition via supervised learning.

The efficiency of human action recognitions is enhanced by

utilizing the Fisher Vector representation and improving the

classification module. Each of the single classifiers are trained

over different feature descriptors that are encoded by the Fisher

Vector approach. The outputs of single classifiers are fused

using the Dempster-Shafer and algebraic combiners to improve

the performance of the action recognition. The classification

performances that are derived from the single classifiers are

compared with the results from fusing the classifiers. The

experimental results show that the action recognition perfor-

mance using the mean rule fusion is more accurate than the

single classifiers, early fusion approach, and other employed

fusion methods.

In the future work, linear discriminant analysis would be

employed to decrease the dimension of the features. Extreme
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learning machine will be used in the classification stage to train

a new model for action recognition. The extracted features

using the deep-learning approaches and mid-level features

also will be employed in the proposed method to modify the

diversity of features in the ensemble of classifiers.
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